Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Small Methods ; 6(10): e2200674, 2022 10.
Article in English | MEDLINE | ID: mdl-36074984

ABSTRACT

Here, three types of surface coatings based on adsorption of organic aromatic acids or their Li salts are applied as functional coating substrates to engineer the surface properties of high voltage LiNi0.5 Mn1.5 O4 (LNMO) spinel cathodes. The materials used as coating include 1,3,5-benzene-tricarboxylic acid (trimesic acid [TMA]), its Li-salt, and 1,4-benzene-dicarboxylic acid (terephthalic acid). The surface coating involves simple ethanol liquid-phase mixing and low-temperature heat treatment under nitrogen flow. In typical comparative studies, TMA-coated (3-5%) LNMO cathodes deliver >90% capacity retention after 400 cycles with significantly improved rate performance in Li-coin cells at 30 °C compared to uncoated material with capacity retention of ≈40%. The cathode coating also prevents the rapid drop in the electrochemical activity of high voltage Li cells at 55 °C. Studies of high voltage full cells containing TMA coated cathodes versus graphite anodes also demonstrate improved electrochemical behavior, including improved cycling performance and capacity retention, increased rate capabilities, lower voltage hysteresis, and very minor direct current internal resistance evolution. In line with the highly positive effects on the electrochemical performance, it is found that these coatings reduce detrimental transition metal cations dissolution and ensure structural stability during prolonged cycling and thermal stability at elevated temperatures.


Subject(s)
Graphite , Salts , Benzene , Dicarboxylic Acids , Electrodes , Ethanol , Ions , Lithium/chemistry , Nitrogen , Organic Chemicals , Tricarboxylic Acids , Nickel/chemistry , Oxygen/chemistry , Manganese/chemistry
2.
ACS Appl Mater Interfaces ; 13(29): 34145-34156, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34256562

ABSTRACT

Ni-rich layered oxide LiNi1 - x - yCoxMnyO2 (1 - x - y > 0.5) materials are favorable cathode materials in advanced Li-ion batteries for electromobility applications because of their high initial discharge capacity. However, they suffer from poor cycling stability because of the formation of cracks in their particles during operation. Here, we present improved structural stability, electrochemical performance, and thermal durability of LiNi0.85Co0.1Mn0.05O2(NCM85). The Nb-doped cathode material, Li(Ni0.85Co0.1Mn0.05)0.997Nb0.003O2, has enhanced cycling stability at different temperatures, outstanding capacity retention, improved performance at high discharge rates, and a better thermal stability compared to the undoped cathode material. The high electrochemical performance of the doped material is directly related to the structural stability of the cathode particles. We further propose that Nb-doping in NCM85 improves material stability because of partial reduction of the amount of Jahn-Teller active Ni3+ ions and formation of strong bonds between the dopant and the oxygen ions, based on density functional theory calculations. Structural studies of the cycled cathodes reveal that doping with niobium suppresses the formation of cracks during cycling, which are abundant in the undoped cycled material particles. The Nb-doped NCM85 cathode material also displayed superior thermal characteristics. The coherence between the improved electrochemical, structural, and thermal properties of the doped material is discussed and emphasized.

3.
ACS Appl Mater Interfaces ; 12(29): 32698-32711, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32660233

ABSTRACT

We demonstrate a novel surface modification of Li- and Mn-rich cathode materials 0.33Li2MnO3·0.67LiNi0.4Co0.2Mn0.4O2 for lithium-ion batteries (high-energy Ni-Co-Mn oxides, HE-NCM) via their heat treatment with trimesic acid (TA) or terephthalic acid at 600 °C under argon. We established the optimal regimes of the treatment-the amounts of HE-NCM, acid, temperature, and time-resulting in a significant improvement of the electrochemical behavior of cathodes in Li cells. It was shown that upon treatment, some lithium is leached out from the surface, leading to the formation of a surface layer comprising rock-salt-like phase Li0.4Ni1.6O2. The analysis of the structural and surface studies by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy confirmed the formation of the above surface layer. We discuss the possible reactions of HE-NCM with the acids and the mechanism of the formation of the new phases, Li0.4Ni1.6O2 and spinel. The electrochemical characterizations were performed by testing the materials versus Li anodes at 30 °C. Importantly, the electrochemical results disclose significantly improved cycling stability (much lower capacity fading) and high-rate performance for the treated materials compared to the untreated ones. We established a lower evolution of the voltage hysteresis with cycling for the treated cathodes compared to that for the untreated ones. Thermal studies by differential scanning calorimetry also demonstrated lower (by ∼32%) total heat released in the reactions of the materials treated with fluoroethylene carbonate (FEC)-dimethyl carbonate (DEC)/LiPF6 electrolyte solutions, thus implying their significant surface stabilization because of the surface treatment. It was established by a postmortem analysis after 400 cycles that a lower amount of transition-metal cations dissolved (especially Ni) and a reduced number of surface cracks were formed for the 2 wt % TA-treated HE-NCMs compared to the untreated ones. We consider the proposed method of surface modification as a simple, cheap, and scalable approach to achieve a steady and superior electrochemical performance of HE-NCM cathodes.

4.
Langmuir ; 35(36): 11670-11678, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31436993

ABSTRACT

Disordered carbons are promising anode materials for sodium ion batteries. However, a major drawback of these materials is their low coulombic efficiency in the first cycles, which indicates parasitic reactions. Such reactions can be suppressed by alumina coating on the surface of the anodic materials; more ions are then available for electrochemical activity, and less electrolyte solution is lost. On the other hand, some pores and surface edge sites are passivated by the coating and are no longer available for reversible reaction with sodium ions; hence, their contribution is eliminated, leading to reduction in specific capacity. We show herein that electrochemical insertion of sodium ions into carbon anodes prior to alumina coating has a double positive effect on anode perfomances, meaning preventing passivation and maintaining high specific capacity. We show that the artificial layer still prevented parasitic reactions, while the pores and surface edge sites retained electrochemical activity. The capacity values were thus restored and even became higher as a result of preventing the development of a surface layer. Ultraviolet photoelectron spectroscopy measurements assessed the energetic states of the electrodes and confirmed that the alumina coating forms a barrier for interfacial electron transfer from the electrode to the solution at any polarization stage.

5.
ACS Appl Mater Interfaces ; 10(35): 29608-29621, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30095889

ABSTRACT

Doping LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode material by small amount of Mo6+ ions, around 1 mol %, affects pronouncedly its structure, surface properties, and electronic and electrochemical behavior. Cathodes comprising Mo6+-doped NCM523 exhibited in Li cells higher specific capacities, higher rate capabilities, lower capacity fading, and lower charge-transfer resistance that relates to a more stable electrode/solution interface due to doping. This, in turn, is ascribed to the fact that the Mo6+ ions tend to concentrate more at the surface, as a result of a synthesis that always includes a necessary calcination, high-temperature stage. This phenomenon of the Mo dopant segregation at the surface in NCM523 material was discovered in the present work for the first time. It appears that Mo doping reduces the reactivity of the Ni-rich NCM cathode materials toward the standard electrolyte solutions of Li-ion batteries. Using density functional theory (DFT) calculations, we showed that Mo6+ ions are preferably incorporated at Ni sites and that the doping increases the amount of Ni2+ ions at the expense of Ni3+ ions, due to charge compensation, in accord with X-ray absorption fine structure (XAFS) spectroscopy measurements. Furthermore, DFT calculations predicted Ni-O bond length distributions in good agreement with the XAFS results, supporting a model of partial substitution of Ni sites by molybdenum.

6.
Phys Chem Chem Phys ; 19(8): 6142-6152, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28191568

ABSTRACT

Although Li- and Mn-rich layered cathodes exhibit high specific capacity, the cathode materials of the general formula Li1+x[NiyMnzCow]O2 (x + y + z + w = 1) suffer from capacity fading and discharge-voltage decay during prolonged cycling, due to the layered-to-spinel transformation upon cycling to potentials higher than 4.5 V vs. Li. In this paper, we study the effect of Mg doping (by partial replacement of Mn ions) on the electrochemical performance of Li- and Mn-rich cathodes in terms of specific capacity, capacity retention and discharge voltage upon cycling. Mg-doped Li- and Mn-rich Li1.2Ni0.16Mn0.54Mg0.02Co0.08O2 and Li1.2Ni0.16Mn0.51Mg0.05Co0.08O2 cathode materials were synthesized by a self-combustion reaction (SCR), and their electrochemical performance in Li-ion batteries was tested. The replacement of a small amount of Mn ions by Mg ions in these materials results in a decrease in their specific capacity. The doping of a small amount of Mg (x = 0.02) resulted only in the stabilization of the capacity, whereas a greater amount (x = 0.05) resulted in improved capacity retention and discharge voltage upon cycling. Li1.2Ni0.16Mn0.51Mg0.05Co0.08O2 exhibits a low specific capacity of about 160 mA h g-1, which increases and then stabilizes at about 230 mA h g-1, and finally decreases to 210 mA h g-1 during 100 cycles. The substitution of Mg for Mn (x = 0.05) results in a higher discharge voltage than the other two cathode materials examined in this study. Structural analysis of the cycled electrodes suggests that Mg suppresses the activation of Li2MnO3 during the initial cycling, and hence, partially prevents layered-to-spinel transformation, resulting in a better electrochemical performance of the Mg-doped cathode material as compared to the undoped material.

7.
ACS Appl Mater Interfaces ; 9(5): 4309-4319, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-27669499

ABSTRACT

Li- and Mn-rich transition-metal oxides of layered structure are promising cathodes for Li-ion batteries because of their high capacity values, ≥250 mAh g-1. These cathodes suffer from capacity fading and discharge voltage decay upon prolonged cycling to potential higher than 4.5 V. Most of these Li- and Mn-rich cathodes contain Ni in a 2+ oxidation state. The fine details of the composition of these materials may be critically important in determining their performance. In the present study, we used Li1.2Ni0.13Mn0.54Co0.13O2 as the reference cathode composition in which Mn ions are substituted by Ni ions so that their average oxidation state in Li1.2Ni0.27Mn0.4Co0.13O2 could change from 2+ to 3+. Upon substitution of Mn with Ni, the specific capacity decreases but, in turn, an impressive stability was gained, about 95% capacity retention after 150 cycles, compared to 77% capacity retention for Li1.2Ni0.13Mn0.54Co0.13O2 cathodes when cycled at a C/5 rate. Also, a higher average discharge voltage of 3.7 V is obtained for Li1.2Ni0.27Mn0.4Co0.13O2 cathodes, which decreases to 3.5 V after 150 cycles, while the voltage fading of cathodes comprising the reference material is more pronounced. The Li1.2Ni0.27Mn0.4Co0.13O2 cathodes also demonstrate higher rate capability compared to the reference Li1.2Ni0.13Mn0.54Co0.13O2 cathodes. These results clearly indicate the importance of the fine composition of cathode materials containing the five elements Li, Mn, Ni, Co, and O. The present study should encourage rigorous optimization efforts related to the fine composition of these cathode materials, before external means such as doping and coating are applied.

8.
ChemSusChem ; 9(17): 2404-13, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27530465

ABSTRACT

Li and Mn-rich layered oxides with the general structure x Li2 MnO3 ⋅(1-x) LiMO2 (M=Ni, Mn, Co) are promising cathode materials for Li-ion batteries because of their high specific capacity, which may be greater than 250 mA h g(-1) . However, these materials suffer from high first-cycle irreversible capacity, gradual capacity fading, limited rate capability and discharge voltage decay upon cycling, which prevent their commercialization. The decrease in average discharge voltage is a major issue, which is ascribed to a structural layered-to-spinel transformation upon cycling of these oxide cathodes in wide potential ranges with an upper limit higher than 4.5 V and a lower limit below 3 V versus Li. By using four elements systems (Li, Mn, Ni, O) with appropriate stoichiometry, it is possible to prepare high capacity composite cathode materials that contain LiMn1.5 Ni0.5 O4 and Lix Mny Niz O2 components. The Li and Mn-rich layered-spinel cathode materials studied herein exhibit a high specific capacity (≥200 mA h g(-1) ) with good capacity retention upon cycling in a wide potential domain (2.4-4.9 V). The effect of constituent phases on their electrochemical performance, such as specific capacity, cycling stability, average discharge voltage, and rate capability, are explored here. This family of materials can provide high specific capacity, high rate capability, and promising cycle life. Using Co-free cathode materials is also an obvious advantage of these systems.


Subject(s)
Aluminum Oxide/chemistry , Electric Power Supplies , Lithium/chemistry , Magnesium Oxide/chemistry , Electrochemistry , Electrodes
9.
Biomacromolecules ; 16(9): 2656-63, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26207448

ABSTRACT

Noncollagenous proteins regulate the formation of the mineral constituent in hard tissue. The mineral formed contains apatite crystals coated by a functional disordered calcium phosphate phase. Although the crystalline phase of bone mineral was extensively investigated, little is known about the disordered layer's composition and structure, and less is known regarding the function of noncollagenous proteins in the context of this layer. In the current study, apatite was prepared with an acidic peptide (ON29) derived from the bone/dentin protein osteonectin. The mineral formed comprises needle-shaped hydroxyapatite crystals like in dentin and a stable disordered phase coating the apatitic crystals as shown using X-ray diffraction, transmission electron microscopy, and solid-state NMR techniques. The peptide, embedded between the mineral particles, reduces the overall phosphate content in the mineral formed as inferred from inductively coupled plasma and elemental analysis results. Magnetization transfers between disordered phase species and apatitic phase species are observed for the first time using 2D (1)H-(31)P heteronuclear correlation NMR measurements. The dynamics of phosphate magnetization transfers reveal that ON29 decreases significantly the amount of water molecules in the disordered phase and increases slightly their content at the ordered-disordered interface. The peptide decreases hydroxyl to disordered phosphate transfers within the surface layer but does not influence transfer within the bulk crystalline mineral. Overall, these results indicate that control of crystallite morphology and properties of the inorganic component in hard tissue by biomolecules is more involved than just direct interaction between protein functional groups and mineral crystal faces. Subtler mechanisms such as modulation of the disordered phase composition and structural changes at the ordered-disordered interface may be involved.


Subject(s)
Apatites/chemistry , Osteonectin/chemistry , Peptides/chemistry , Humans
10.
Materials (Basel) ; 8(7): 4593-4607, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-28793459

ABSTRACT

Magnetic Fe3O4, Fe and Fe/Pd nanoparticles embedded within the pores of activated carbon fabrics (ACF) were prepared by impregnation of the ACF in iron acetylacetanoate (Fe(acac)3) ethanol solution, followed by thermal decomposition of the embedded iron precursor at 200, 400 and 600 °C in an inert atmosphere. The effect of the annealing temperature on the chemical composition, shape, crystallinity, surface area, pore volume, and magnetic properties of the various functionalized ACF was elucidated. The Fe nanoparticles within the ACF were also doped with tinier Pd nanoparticles, by impregnation of the Fe/ACF in palladium acetate ethanol solution. The potential use of the functionalized ACF for removal of a model azo-dye, orange II, was demonstrated. This study illustrated the enhanced removal of the dye from an aqueous solution according to the following order: Fe/Pd/ACF > Fe/ACF > ACF. In addition, the enhanced activity of Fe3O4/ACF in the presence of increasing concentrations of H2O2 (Fenton catalysts) was also illustrated.

11.
Materials (Basel) ; 6(11): 5234-5246, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-28788386

ABSTRACT

Porous polydivinyl benzene (PDVB) microspheres of narrow size distribution were formed by a single-step swelling process of template uniform polystyrene microspheres with divinyl benzene (DVB), followed by polymerization of the DVB within the swollen template microspheres. The PDVB porous particles were then formed by dissolution of the template polystyrene polymer. Unique "cauliflower-like" ZnO microparticles were prepared by the entrapping of the ZnO precursor ZnCl2 in the PDVB porous microspheres under vacuum, followed by calcination of the obtained ZnCl2-PDVB microspheres in an air atmosphere. The morphology, crystallinity and fluorescence properties of those ZnO microparticles were characterized. This "cauliflower-like" shape ZnO particles is in contrast to a previous study demonstrated the preparation of spherical shaped porous ZnO and C-ZnO microparticles by a similar method, using zinc acetate (ZnAc) as a precursor. Two diverted synthesis mechanisms for those two different ZnO microparticles structures are proposed, based on studies of the distribution of each of the ZnO precursors within the PDVB microspheres.

12.
Chemistry ; 18(15): 4575-82, 2012 Apr 10.
Article in English | MEDLINE | ID: mdl-22407609

ABSTRACT

Titanium oxide (TiO(2)) nanoparticles (NPs) in their two forms, anatase and rutile, were synthesized and deposited onto the surface of cotton fabrics by using ultrasonic irradiation. The structure and morphology of the nanoparticles were analyzed by using characterization methods such as XRD, TEM, STEM, and EDS. The antimicrobial activities of the TiO(2)-cotton composites were tested against Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) strains, as well as against Candida albicans. Significant antimicrobial effect was observed, mainly against Staphylococcus aureus. In addition, the combination of visible light and TiO(2) NPs showed enhanced antimicrobial activity.


Subject(s)
Anti-Infective Agents/chemistry , Coated Materials, Biocompatible/chemistry , Escherichia coli/drug effects , Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Titanium/chemistry , Titanium/pharmacology , Coated Materials, Biocompatible/pharmacology , Textiles
13.
Langmuir ; 27(17): 11071-80, 2011 Sep 06.
Article in English | MEDLINE | ID: mdl-21806045

ABSTRACT

Magnetic poly(divinyl benzene)/Fe(3)O(4) microspheres with a narrow size distribution were produced by entrapping the iron pentacarbonyl precursor within the pores of uniform porous poly(divinyl benzene) microspheres prepared in our laboratory, followed by the decomposition in a sealed cell of the entrapped Fe(CO)(5) particles at 300 °C under an inert atmosphere. Magnetic onionlike fullerene microspheres with a narrow size distribution were produced by annealing the obtained PDVB/Fe(3)O(4) particles at 500, 600, 800, and 1100 °C, respectively, under an inert atmosphere. The formation of carbon graphitic layers at low temperatures such as 500 °C is unique and probably obtained because of the presence of the magnetic iron nanoparticles. The annealing temperature allowed control of the composition, size, size distribution, crystallinity, porosity, and magnetic properties of the produced magnetic microspheres.


Subject(s)
Carbon/chemistry , Iron/chemistry , Magnetics , Magnetite Nanoparticles/chemistry , Polyvinyls/chemistry , Microspheres , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...