Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 604(7906): 457-462, 2022 04.
Article in English | MEDLINE | ID: mdl-35444321

ABSTRACT

Gate-model quantum computers promise to solve currently intractable computational problems if they can be operated at scale with long coherence times and high-fidelity logic. Neutral-atom hyperfine qubits provide inherent scalability owing to their identical characteristics, long coherence times and ability to be trapped in dense, multidimensional arrays1. Combined with the strong entangling interactions provided by Rydberg states2-4, all the necessary characteristics for quantum computation are available. Here we demonstrate several quantum algorithms on a programmable gate-model neutral-atom quantum computer in an architecture based on individual addressing of single atoms with tightly focused optical beams scanned across a two-dimensional array of qubits. Preparation of entangled Greenberger-Horne-Zeilinger (GHZ) states5 with up to six qubits, quantum phase estimation for a chemistry problem6 and the quantum approximate optimization algorithm (QAOA)7 for the maximum cut (MaxCut) graph problem are demonstrated. These results highlight the emergent capability of neutral-atom qubit arrays for universal, programmable quantum computation, as well as preparation of non-classical states of use for quantum-enhanced sensing.

2.
Phys Rev Lett ; 123(23): 230501, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31868460

ABSTRACT

We demonstrate high fidelity two-qubit Rydberg blockade and entanglement on a pair of sites in a large two-dimensional qubit array. The qubit array is defined by a grid of blue detuned lines of light with 121 sites for trapping atomic qubits. Improved experimental methods have increased the observed Bell state fidelity to F_{Bell}=0.86(2). Accounting for errors in state preparation and measurement we infer a fidelity of F_{Bell}^{-SPAM}=0.88. Accounting for errors in single qubit operations we infer that a Bell state created with the Rydberg mediated C_{Z} gate has a fidelity of F_{Bell}^{C_{Z}}=0.89. Comparison with a detailed error model based on quantum process matrices indicates that finite atom temperature and laser noise are the dominant error sources contributing to the observed gate infidelity.

3.
Phys Rev Lett ; 122(14): 143002, 2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31050452

ABSTRACT

Engineering controllable, strongly interacting many-body quantum systems is at the frontier of quantum simulation and quantum information processing. Arrays of laser-cooled neutral atoms in optical tweezers have emerged as a promising platform because of their flexibility and the potential for strong interactions via Rydberg states. Existing neutral atom array experiments utilize alkali atoms, but alkaline-earth atoms offer many advantages in terms of coherence and control, and also open the door to new applications in precision measurement and time keeping. In this Letter, we present a technique to trap individual alkaline-earth-like ytterbium (Yb) atoms in optical tweezer arrays. The narrow ^{1}S_{0}-^{3}P_{1} intercombination line is used for both cooling and imaging in a magic-wavelength optical tweezer at 532 nm. The low Doppler temperature allows for imaging near the saturation intensity, resulting in a very high atom detection fidelity. We demonstrate the imaging fidelity concretely by observing rare (<1 in 10^{4} images) spontaneous quantum jumps into and out of a metastable state. We also demonstrate stochastic loading of atoms into a two-dimensional, 144-site tweezer array. This platform will enable advances in quantum information processing, quantum simulation, and precision measurement. The demonstrated narrow-line Doppler imaging may also be applied in tweezer arrays or quantum gas microscopes using other atoms with similar transitions, such as erbium and dysprosium.

SELECTION OF CITATIONS
SEARCH DETAIL
...