Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(6): 114253, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38781074

ABSTRACT

Diabetic kidney disease (DKD), the most common cause of kidney failure, is a frequent complication of diabetes and obesity, and yet to date, treatments to halt its progression are lacking. We analyze kidney single-cell transcriptomic profiles from DKD patients and two DKD mouse models at multiple time points along disease progression-high-fat diet (HFD)-fed mice aged to 90-100 weeks and BTBR ob/ob mice (a genetic model)-and report an expanding population of macrophages with high expression of triggering receptor expressed on myeloid cells 2 (TREM2) in HFD-fed mice. TREM2high macrophages are enriched in obese and diabetic patients, in contrast to hypertensive patients or healthy controls in an independent validation cohort. Trem2 knockout mice on an HFD have worsening kidney filter damage and increased tubular epithelial cell injury, all signs of worsening DKD. Together, our studies suggest that strategies to enhance kidney TREM2high macrophages may provide therapeutic benefits for DKD.


Subject(s)
Diabetic Nephropathies , Diet, High-Fat , Kidney , Macrophages , Membrane Glycoproteins , Mice, Knockout , Obesity , Receptors, Immunologic , Animals , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Macrophages/metabolism , Obesity/metabolism , Obesity/pathology , Obesity/complications , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Mice , Kidney/pathology , Kidney/metabolism , Humans , Male , Mice, Inbred C57BL , Female
2.
J Clin Invest ; 131(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33444290

ABSTRACT

Mutations affecting mitochondrial coenzyme Q (CoQ) biosynthesis lead to kidney failure due to selective loss of podocytes, essential cells of the kidney filter. Curiously, neighboring tubular epithelial cells are spared early in disease despite higher mitochondrial content. We sought to illuminate noncanonical, cell-specific roles for CoQ, independently of the electron transport chain (ETC). Here, we demonstrate that CoQ depletion caused by Pdss2 enzyme deficiency in podocytes results in perturbations in polyunsaturated fatty acid (PUFA) metabolism and the Braf/Mapk pathway rather than ETC dysfunction. Single-nucleus RNA-Seq from kidneys of Pdss2kd/kd mice with nephrotic syndrome and global CoQ deficiency identified a podocyte-specific perturbation of the Braf/Mapk pathway. Treatment with GDC-0879, a Braf/Mapk-targeting compound, ameliorated kidney disease in Pdss2kd/kd mice. Mechanistic studies in Pdss2-depleted podocytes revealed a previously unknown perturbation in PUFA metabolism that was confirmed in vivo. Gpx4, an enzyme that protects against PUFA-mediated lipid peroxidation, was elevated in disease and restored after GDC-0879 treatment. We demonstrate broader human disease relevance by uncovering patterns of GPX4 and Braf/Mapk pathway gene expression in tissue from patients with kidney diseases. Our studies reveal ETC-independent roles for CoQ in podocytes and point to Braf/Mapk as a candidate pathway for the treatment of kidney diseases.


Subject(s)
Ataxia/metabolism , Indenes/pharmacology , Kidney Diseases/metabolism , Lipid Peroxidation/drug effects , MAP Kinase Signaling System/drug effects , Mitochondrial Diseases/metabolism , Muscle Weakness/metabolism , Podocytes/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Pyrazoles/pharmacology , Ubiquinone/deficiency , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Animals , Ataxia/drug therapy , Ataxia/genetics , Ataxia/pathology , Drug Delivery Systems , HEK293 Cells , Humans , Kidney Diseases/drug therapy , Kidney Diseases/genetics , Kidney Diseases/pathology , Lipid Peroxidation/genetics , MAP Kinase Signaling System/genetics , Mice , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Muscle Weakness/drug therapy , Muscle Weakness/genetics , Muscle Weakness/pathology , Podocytes/pathology , Proto-Oncogene Proteins B-raf/genetics , RNA-Seq , Ubiquinone/genetics , Ubiquinone/metabolism
3.
Cell Rep Med ; 1(8): 100137, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33294858

ABSTRACT

Drug repurposing has the advantage of identifying potential treatments on a shortened timescale. In response to the pandemic spread of SARS-CoV-2, we took advantage of a high-content screen of 3,713 compounds at different stages of clinical development to identify FDA-approved compounds that reduce mucin-1 (MUC1) protein abundance. Elevated MUC1 levels predict the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) and correlate with poor clinical outcomes. Our screen identifies fostamatinib (R788), an inhibitor of spleen tyrosine kinase (SYK) approved for the treatment of chronic immune thrombocytopenia, as a repurposing candidate for the treatment of ALI. In vivo, fostamatinib reduces MUC1 abundance in lung epithelial cells in a mouse model of ALI. In vitro, SYK inhibition by the active metabolite R406 promotes MUC1 removal from the cell surface. Our work suggests fostamatinib as a repurposing drug candidate for ALI.

4.
Proc Natl Acad Sci U S A ; 117(52): 33404-33413, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33376219

ABSTRACT

Single-cell quantification of RNAs is important for understanding cellular heterogeneity and gene regulation, yet current approaches suffer from low sensitivity for individual transcripts, limiting their utility for many applications. Here we present Hybridization of Probes to RNA for sequencing (HyPR-seq), a method to sensitively quantify the expression of hundreds of chosen genes in single cells. HyPR-seq involves hybridizing DNA probes to RNA, distributing cells into nanoliter droplets, amplifying the probes with PCR, and sequencing the amplicons to quantify the expression of chosen genes. HyPR-seq achieves high sensitivity for individual transcripts, detects nonpolyadenylated and low-abundance transcripts, and can profile more than 100,000 single cells. We demonstrate how HyPR-seq can profile the effects of CRISPR perturbations in pooled screens, detect time-resolved changes in gene expression via measurements of gene introns, and detect rare transcripts and quantify cell-type frequencies in tissue using low-abundance marker genes. By directing sequencing power to genes of interest and sensitively quantifying individual transcripts, HyPR-seq reduces costs by up to 100-fold compared to whole-transcriptome single-cell RNA-sequencing, making HyPR-seq a powerful method for targeted RNA profiling in single cells.


Subject(s)
DNA Probes/genetics , High-Throughput Nucleotide Sequencing/methods , Nucleic Acid Hybridization , RNA/metabolism , Single-Cell Analysis , Animals , CRISPR-Cas Systems/genetics , Gene Expression , Humans , Introns/genetics , K562 Cells , Kidney/cytology , Mice , Polyadenylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , THP-1 Cells , Time Factors
5.
bioRxiv ; 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32637960

ABSTRACT

Drug repurposing is the only method capable of delivering treatments on the shortened time-scale required for patients afflicted with lung disease arising from SARS-CoV-2 infection. Mucin-1 (MUC1), a membrane-bound molecule expressed on the apical surfaces of most mucosal epithelial cells, is a biochemical marker whose elevated levels predict the development of acute lung injury (ALI) and respiratory distress syndrome (ARDS), and correlate with poor clinical outcomes. In response to the pandemic spread of SARS-CoV-2, we took advantage of a high content screen of 3,713 compounds at different stages of clinical development to identify FDA-approved compounds that reduce MUC1 protein abundance. Our screen identified Fostamatinib (R788), an inhibitor of spleen tyrosine kinase (SYK) approved for the treatment of chronic immune thrombocytopenia, as a repurposing candidate for the treatment of ALI. In vivo , Fostamatinib reduced MUC1 abundance in lung epithelial cells in a mouse model of ALI. In vitro , SYK inhibition by Fostamatinib promoted MUC1 removal from the cell surface. Our work reveals Fostamatinib as a repurposing drug candidate for ALI and provides the rationale for rapidly standing up clinical trials to test Fostamatinib efficacy in patients with COVID-19 lung injury.

SELECTION OF CITATIONS
SEARCH DETAIL
...