Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; 13(4): e0105223, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38426729

ABSTRACT

We have previously reported on the detection of an unknown picorna-like virus in alfalfa samples. The exact host of the virus was unclear due to its similarity to the members of Iflaviridae family, which typically infect arthropods. The virus was provisionally named alfalfa-associated picorna-like virus 2. Here, we report a complete genomic sequence of the virus.

2.
Viruses ; 16(2)2024 02 07.
Article in English | MEDLINE | ID: mdl-38400042

ABSTRACT

Hibiscus is not native to Colombia but well suited to its arid soil and dry climates. A single hibiscus plant from Risaralda, showing black spots on upper and lower sides of its leaves, was collected for virome analysis using meta-transcriptomic high-throughput sequencing technology. Bioinformatic analysis identified 12.5% of the total reads in the Ribo-Zero cDNA library which mapped to viral genomes. BLAST searches revealed the presence of carlavirus, potexvirus, and of known members of the genera Betacarmovirus, Cilevirus, Nepovirus, and Tobamovirus in the sample; confirmed by RT-PCR with virus-specific primers followed by amplicon sequencing. Furthermore, in silico analysis suggested the possibility of a novel soymovirus, and a new hibiscus strain of citrus leprosis virus C2 in the mixed infection. Both RNA dependent RNA polymerase and coat protein gene sequences of the potex and carla viruses shared less than 72% nucleotide and 80% amino acid identities with any alphaflexi- and betaflexi-virus sequences available in GenBank, identifying three novel carlavirus and one potexvirus species in the Hibiscus rosa-sinensis plant. The detection of physalis vein necrosis nepovirus and passion fruit green spot cilevirus in hibiscus are also new reports from Colombia. Overall, the meta-transcriptome analysis identified the complex virome associated with the black spot symptoms on hibiscus leaves and demonstrated the diversity of virus genera tolerated in the mixed infection of a single H. rosa-sinensis plant.


Subject(s)
Coinfection , Hibiscus , RNA Viruses , Hibiscus/genetics , Colombia , RNA Viruses/genetics , Gene Expression Profiling
3.
Virol J ; 20(1): 284, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38037050

ABSTRACT

BACKGROUND: We have recently identified a novel virus detected in alfalfa seed material. The virus was tentatively named alfalfa-associated potyvirus 1, as its genomic fragments bore similarities with potyvirids. In this study, we continued investigating this novel species, expanding information on its genomic features and biological characteristics. METHODS: This research used a wide range of methodology to achieve end results: high throughput sequencing, bioinformatics tools, reverse transcription-polymerase chain reactions, differential diagnostics using indicator plants, virus purification, transmission electron microscopy, and others. RESULTS: In this study, we obtained a complete genome sequence of the virus and classified it as a tentative species in the new genus, most closely related to the members of the genus Ipomovirus in the family Potyviridae. This assumption is based on the genome sequence and structure, phylogenetic relationships, and transmission electron microscopy investigations. We also demonstrated its mechanical transmission to the indicator plant Nicotiana benthamiana and to the natural host Medicago sativa, both of which developed characteristic symptoms therefore suggesting a pathogenic nature of the disease. CONCLUSIONS: Consistent with symptomatology, the virus was renamed to alfalfa vein mottling virus. A name Alvemovirus was proposed for the new genus in the family Potyviridae, of which alfalfa vein mottling virus is a tentative member.


Subject(s)
Potyviridae , Potyvirus , Medicago sativa , Genome, Viral , Phylogeny , Potyviridae/genetics , Potyvirus/genetics
4.
Front Microbiol ; 14: 1225781, 2023.
Article in English | MEDLINE | ID: mdl-37692394

ABSTRACT

Through the recent advances of modern high-throughput sequencing technologies, the "one microbe, one disease" dogma is being gradually replaced with the principle of the "pathobiome". Pathobiome is a comprehensive biotic environment that not only includes a diverse community of all disease-causing organisms within the plant but also defines their mutual interactions and resultant effect on plant health. To date, the concept of pathobiome as a major component in plant health and sustainable production of alfalfa (Medicago sativa L.), the most extensively cultivated forage legume in the world, is non-existent. Here, we approached this subject by characterizing the biodiversity of the alfalfa pathobiome using high-throughput sequencing technology. Our metagenomic study revealed a remarkable abundance of different pathogenic communities associated with alfalfa in the natural ecosystem. Profiling the alfalfa pathobiome is a starting point to assess known and identify new and emerging stress challenges in the context of plant disease management. In addition, it allows us to address the complexity of microbial interactions within the plant host and their impact on the development and evolution of pathogenesis.

5.
Plant Dis ; 107(12): 3763-3772, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37386702

ABSTRACT

Iris severe mosaic virus (ISMV, Potyviridae) can threaten the sustainability of iris production and the marketability of the plants. Effective intervention and control strategies require rapid and early detection of viral infections. The wide range of viral symptoms, from asymptomatic to severe chlorosis of the leaves, renders diagnosis solely based on visual indicators ineffective. A nested PCR-based diagnostic assay was developed for the reliable detection of ISMV in iris leaves and in rhizomes. Considering the genetic variability of ISMV, two primer pairs were designed to detect the highly conserved 3' untranslated region (UTR) of the viral genomic RNA. The specificity of the primer pairs was confirmed against four other potyviruses. The sensitivity of detection was enhanced by one order of magnitude using diluted cDNA and a nested approach. Nested PCR facilitated detecting ISMV on field-grown samples beyond the capabilities of a currently available immunological test and in iris rhizome, which would facilitate ensuring clean stock is planted. This approach dramatically improves the detection threshold of ISMV on potentially low virus titer samples. The study provides a practical, accurate, and sensitive tool for the early detection of a deleterious virus that infects a popular ornamental and landscape plant.


Subject(s)
Potyvirus , 3' Untranslated Regions/genetics , Prevalence , Potyvirus/genetics , Polymerase Chain Reaction , RNA, Viral/genetics , Plants
6.
Virol J ; 20(1): 96, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208777

ABSTRACT

BACKGROUND: Seed transmission of plant viruses can be important due to the role it plays in their dissemination to new areas and subsequent epidemics. Seed transmission largely depends on the ability of a virus to replicate in reproductive tissues and survive during the seed maturation process. It occurs through the infected embryo or mechanically through the contaminated seed coat. Alfalfa (Medicago sativa L.) is an important legume forage crop worldwide, and except for a few individual seedborne viruses infecting the crop, its seed virome is poorly known. The goal of this research was to perform initial seed screenings on alfalfa germplasm accessions maintained by the USDA ARS National Plant Germplasm System in order to identify pathogenic viruses and understand their potential for dissemination. METHODS: For the detection of viruses, we used high throughput sequencing combined with bioinformatic tools and reverse transcription-polymerase chain reactions. RESULTS: Our results suggest that, in addition to common viruses, alfalfa seeds are infected by other potentially pathogenic viral species that could be vertically transmitted to offspring. CONCLUSIONS: To the best of our knowledge, this is the first study of the alfalfa seed virome carried out by HTS technology. This initial screening of alfalfa germplasm accessions maintained by the NPGS showed that the crop's mature seeds contain a broad range of viruses, some of which were not previously considered to be seed-transmitted. The information gathered will be used to update germplasm distribution policies and to make decisions on the safety of distributing germplasm based on viral presence.


Subject(s)
Medicago sativa , Plant Viruses , Virome , Computational Biology , Seeds , Plant Viruses/genetics
7.
Plant Dis ; 107(11): 3437-3447, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37079008

ABSTRACT

Sugarcane yellow leaf virus (SCYLV), the causal agent of yellow leaf, has been reported in an increasing number of sugarcane-growing locations since its first report in the 1990s in Brazil, Florida, and Hawaii. In this study, the genetic diversity of SCYLV was investigated using the genome coding sequence (5,561 to 5,612 nt) of 109 virus isolates from 19 geographical locations, including 65 new isolates from 16 geographical regions worldwide. These isolates were distributed in three major phylogenetic lineages (BRA, CUB, and REU), except for one isolate from Guatemala. Twenty-two recombination events were identified among the 109 isolates of SCYLV, thus confirming that recombination was a significant driving force in the genetic diversity and evolution of this virus. No temporal signal was found in the genomic sequence dataset, most likely because of the short temporal window of the 109 SCYLV isolates (1998 to 2020). Among 27 primers reported in the literature for the detection of the virus by RT-PCR, none matched 100% with all 109 SCYLV sequences, suggesting that the use of some primer pairs may not result in the detection of all virus isolates. Primers YLS111/YLS462, which were the first primer pair used by numerous research organizations to detect the virus by RT-PCR, failed to detect isolates belonging to the CUB lineage. In contrast, primer pair ScYLVf1/ScYLVr1 efficiently detected isolates of all three lineages. Continuous pursuit of knowledge of SCYLV genetic variability is therefore critical for effective diagnosis of yellow leaf, especially in virus-infected and mainly asymptomatic sugarcane plants.


Subject(s)
Saccharum , Phylogeny , Plant Diseases , Genetic Variation
8.
Plant Dis ; 107(6): 1649-1663, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36572970

ABSTRACT

Papaya sticky disease (PSD) is a major virus disorder of papaya (Carica papaya). The disease is characterized by fruit damage caused by the oxidation of spontaneously exuded latex. In Brazil, PSD is caused by the coinfection of two viruses, papaya meleira virus (PMeV), a toti-like virus, and papaya meleira virus-2 (PMeV-2), an umbra-like virus. The disorder has also been reported in Mexico and, more recently, in Australia, but the presence of both PMeV and PMeV-2 in symptomatic plants has been documented only in Brazil. In 2021, 2-year-old papaya plants (cultivar Passion Red) exhibiting PSD-like symptoms were observed in Santa Elena Province, Ecuador. Molecular tests of leaf tissue and fruit latex from symptomatic plants failed to detect PMeV. However, papaya virus Q (PpVQ), an umbra-like virus related to but distinct from PMeV-2, and a novel virus, tentatively named papaya sticky fruit-associated virus (PSFaV), were found in the symptomatic samples. PSFaV shares 56% nucleotide identity with the genome of PMeV, suggesting that PSD symptoms can be caused by "couples" of viruses related to but distinct from PMeV (a toti-like virus) and PMeV-2 (an umbra-like virus). This review discusses the history and epidemiology of PSD and the genomic features of newly discovered virus couples involved in this syndrome. Given the unusual etiology of PSD, which involves distinct virus species, the importance of implementing proper diagnostic approaches for PSD is highlighted.


Subject(s)
Carica , Plant Viruses , RNA Viruses , RNA Viruses/genetics , Plant Viruses/genetics , Latex , Plant Leaves
9.
Arch Virol ; 166(5): 1501-1505, 2021 May.
Article in English | MEDLINE | ID: mdl-33677680

ABSTRACT

The genus Carlavirus (family Betaflexiviridae, order Tymovirales) currently includes 53 species recognized by the ICTV. The NCBI GenBank database has 43 full-length carlavirus genome sequences (7,890 to 9,073 nt). Surprisingly, the type species Carnation latent virus is not associated with a complete genome sequence of a carnation latent virus (CLV) isolate; GenBank only has accessions with 1313 or fewer nucleotides. The goal of this study was to determine the full-length genome sequence of CLV. Naturally infected greenhouse-grown 'Kiwi Lace' carnation plants that tested positive for CLV by ELISA and RT-PCR were used as source plants for high-throughput sequencing, completed by 5' and 3' RACE and validated by Sanger sequencing of CLV-specific RT-PCR-generated amplicons. The complete CLV-KL sequence (MN450069) was determined to be 8,513 nt in length. In pairwise analysis, the genome shares 40-46% identity with recognized carlaviruses and the six in silico-translated proteins have 15-62% amino acid sequence identity to their respective carlavirus orthologs. The CLV-KL coat protein shares 98.4% identity with the NCBI reference sequence CLV-UK. In phylogenetic analysis, CLV clusters with butterbur mosaic virus, coleus vein necrosis virus, and garlic common latent virus. This is the first report of the full genome sequence of an isolate of carnation latent virus, the type member of the genus Carlavirus.


Subject(s)
Carlavirus/genetics , Dianthus/virology , Genome, Viral/genetics , Amino Acid Sequence , Base Sequence , Carlavirus/classification , Carlavirus/isolation & purification , Chromosome Mapping , Open Reading Frames , Phylogeny , Plant Diseases/virology , RNA, Viral/genetics , Viral Proteins/genetics
10.
PLoS One ; 16(2): e0241652, 2021.
Article in English | MEDLINE | ID: mdl-33544737

ABSTRACT

A mild isolate of Papaya ringspot virus type-P, abbreviated as PRSV-mild, from Ecuador was sequenced and characterized. The most distinguishing symptom induced by PRSV-mild was gray powder-like leaf patches radiating from secondary veins. In greenhouse experiments, PRSV-mild did not confer durable protection against a severe isolate of the virus (PRSV-sev), obtained from the same field. Furthermore, isolate specific detection in mixed-infected plants showed that PRSV-sev becomes dominant in infections, rendering PRSV-mild undetectable at 90-120 days post superinfection. Virus testing using isolate-specific primers detected PRSV-mild in two out of five surveyed provinces, with 10% and 48% of incidence in Santo Domingo and Los Ríos, respectively. Comparative genomics showed that PRSV-mild lacks two amino acids from the coat protein region, whereas amino acid determinants for asymptomatic phenotypes were not identified. Recombination events were not predicted in the genomes of the Ecuadorean isolates. Phylogenetic analyses placed both PRSV-mild and PRSV-sev in a clade that includes an additional PRSV isolate from Ecuador and others from South America.


Subject(s)
Carica/virology , Plant Diseases/virology , Potyvirus/genetics , Genome, Viral , Phylogeny , Potyvirus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...