Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13060, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844643

ABSTRACT

These days, the construction industry is facing sustainability issues, leading to the selection of greener, low-carbon, alkali-activated materials. This study examines a low calcium alkali activated system composed of three constituents (ceramic brick, metakaolin waste, and phosphogypsum). The AAB compositions consist of the primary precursor, waste ceramic brick, which is increasingly (20-100 wt%) replaced with waste metakaolin. The alkaline solution was made of sodium hydroxide and water; dosage depended on the Na2O/Al2O3 ratio (1.00-1.36). The AAB specimens were inspected by using XRD (X-ray diffraction) and FT-IR (Fourier transform infrared spectroscopy) methods for the evaluation of mineral composition, accompanied by SEM-EDS (scanning electron microscopy & energy dispersive X-ray spectroscopy) for the analysis of the microstructure. The compressive strength after 7, 28 and 90 days, along with water absorption and softening coefficient were determined. Also, mixture calorimetry was established. The results have shown that the initial materials are suitable for producing medium-strength alkali-activated binder under ambient temperature. The maximum compressive strength was reached by using the combination of 80% CBW and 20% MKW (13.9 and 21.2 MPa after 28 and 90 days respectively). The compressive strength development was linked with the formation N-A-S-H gel and faujasite type zeolite. A higher level of geopolymerization in composition with metakaolin waste led to lower compressive strength. Consequently, binding materials with low demand of high final and especially early compressive strength could be produced under ambient temperature curing, making them more sustainable.

2.
Materials (Basel) ; 15(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35591739

ABSTRACT

This paper analyzes the efficiency of shrinkage reducing additives for the shrinkage deformations of ordinary Portland cement (OPC) concrete and its mechanical properties. OPC concrete was modified with an organic compound-based shrinkage reducing additive (SRA), quicklime, polypropylene fiber, and hemp fiber. It was found that a combination of 2.5% quicklime and 1.5% SRA led to the highest reduction in shrinkage deformations in concrete, and the values of shrinkage reached up to 40.0%. On the contrary, compositions with 1.5% SRA were found to have a significant reduction in compressive strength after 100 freeze-thaw cycles. Hemp fiber did not show a significant shrinkage reduction, but it is an environmentally friendly additive, which can improve OPC concrete flexural strength. Polypropylene fiber can be used in conjunction with shrinkage reducing additives to improve other mechanical properties of concrete. It was observed that 3.0 kg/m3 of polypropylene fiber in concrete could increase flexural strength by 11.7%. Moreover, before degradation, concrete with polypropylene fiber shows high fracture energy and decent residual strength of 1.9 MPa when a 3.5 mm crack appears. The tests showed a compressive strength decrease in all compositions with shrinkage reducing additives and its combinations after 28 days of hardening.

3.
Materials (Basel) ; 14(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33947072

ABSTRACT

This paper analyzes concrete fine aggregate (sand) modification by scrap tire rubber particles-fine crumb rubber (FCR) and coarse crumb rubber (CCR) of fraction 0/1 mm. Such rubberized concrete to get better bonding properties were modified by car-boxylated styrene butadiene rubber (SBR) latex and to gain the strength were modified by glass waste. The following tests-slump test, fresh concrete density, fresh concrete air content, compressive strength, flexural strength, fracture energy, freezing-thawing, porosity parameter, and scanning electron microscope-were conducted for rubberized concretes. From experiments, we can see that fresh concrete properties decreased when crumb rubber content has increased. Mostly it is related to crumb rubber (CR) lower specific gravity nature and higher fineness compared with changed fine aggregate-sand. In this research, we obtained a slight loss of compressive strength when CR was used in concrete However, these rubberized concretes with a small amount of rubber provided sufficient compressive strength results (greater than 50 MPa). Due to the pozzolanic reaction, we see that compressive strength results after 56 days in glass powder modified samples increased by 11-13% than 28 days com-pressive strengths, while at the same period control samples increased its compressive strength about 2.5%. Experiments have shown that the flexural strength of rubberized concrete with small amounts of CR increased by 3.4-15.8% compared to control mix, due the fact that rubber is an elastic material and it will absorb high energy and perform positive bending toughness. The test results indicated that CR can intercept the tensile stress in concrete and make the deformation more plastic. Fracturing of such conglomerate concrete is not brittle, there is no abrupt post-peak load drop and gradually continues after the maximum load is exceeded. Such concrete requires much higher fracture energy. It was obtained that FCR particles (lower than A300) will entrap more micropores content than coarse rubbers because due to their high specific area. Freezing-thawing results have confirmed that Kf values can be conveniently used to predict freeze-thaw resistance and durability of concrete. The test has shown that modification of concrete with 10 kg fine rubber waste will lead to similar mechanical and durability properties of concrete as was obtained in control concrete with 2 kg of prefabricated air bubbles.

SELECTION OF CITATIONS
SEARCH DETAIL
...