Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am Nat ; 188(5): 554-566, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27788345

ABSTRACT

Generalist parasites can strongly influence interactions between native and invasive species. Host competence can be used to predict how an invasive species will affect community disease dynamics; the addition of a highly competent, invasive host is predicted to increase disease. However, densities of invasive and native species can also influence the impacts of invasive species on community disease dynamics. We examined whether information on host competence alone could be used to accurately predict the effects of an invasive host on disease in native hosts. We first characterized the relative competence of an invasive species and a native host species to a native parasite. Next, we manipulated species composition in mesocosms and found that host competence results did not accurately predict community dynamics. While the invasive host was more competent than the native, the presence of the native (lower competence) host increased disease in the invasive (higher competence) host. To identify potential mechanisms driving these patterns, we analyzed a two-host, one-parasite model parameterized for our system. Our results demonstrate that patterns of disease were primarily driven by relative population densities, mediated by asymmetry in intra- and interspecific competition. Thus, information on host competence alone may not accurately predict how an invasive species will influence disease in native species.


Subject(s)
Host-Parasite Interactions , Introduced Species , Host Specificity , Population Density , Population Dynamics
2.
Ecohealth ; 13(4): 698-707, 2016 12.
Article in English | MEDLINE | ID: mdl-27655649

ABSTRACT

Habitat disturbance and anthropogenic change are globally associated with extinctions and invasive species introductions. Less understood is the impact of environmental change on the parasites harbored by endangered, extinct, and introduced species. To improve our understanding of the impacts of anthropogenic disturbance on such host-parasite interactions, we investigated an invasive trypanosome (Trypanosoma lewisi). We screened 348 individual small mammals, representing 26 species, from both forested and non-forested habitats in rural Uganda. Using microscopy and PCR, we identified 18% of individuals (order Rodentia) as positive for trypanosomes. Further phylogenetic analyses revealed two trypanosomes circulating-T. lewisi and T. varani. T. lewisi was found in seven species both native and invasive, while T. varani was identified in only three native forest species. The lack of T. varani in non-forested habitats suggests that it is a natural parasite of forest-dwelling rodents. Our findings suggest that anthropogenic disturbance may lead to spillover of an invasive parasite (T. lewisi) from non-native to native species, and lead to local co-extinction of a native parasite (T. varani) and native forest-dwelling hosts.


Subject(s)
Rodent Diseases , Rodentia/parasitology , Trypanosomiasis/veterinary , Animals , Humans , Phylogeny , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL
...