Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3987, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734698

ABSTRACT

Despite advances in active drug targeting for blood-brain barrier penetration, two key challenges persist: first, attachment of a targeting ligand to the drug or drug carrier does not enhance its brain biodistribution; and second, many brain diseases are intricately linked to microcirculation disorders that significantly impede drug accumulation within brain lesions even after they cross the barrier. Inspired by the neuroprotective properties of vinpocetine, which regulates cerebral blood flow, we propose a molecular library design centered on this class of cyclic tertiary amine compounds and develop a self-enhanced brain-targeted nucleic acid delivery system. Our findings reveal that: (i) vinpocetine-derived ionizable-lipidoid nanoparticles efficiently breach the blood-brain barrier; (ii) they have high gene-loading capacity, facilitating endosomal escape and intracellular transport; (iii) their administration is safe with minimal immunogenicity even with prolonged use; and (iv) they have potent pharmacologic brain-protective activity and may synergize with treatments for brain disorders as demonstrated in male APP/PS1 mice.


Subject(s)
Blood-Brain Barrier , Brain , Cerebrovascular Circulation , Nanoparticles , Vinca Alkaloids , Animals , Vinca Alkaloids/pharmacology , Vinca Alkaloids/pharmacokinetics , Vinca Alkaloids/administration & dosage , Vinca Alkaloids/chemistry , Nanoparticles/chemistry , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Mice , Cerebrovascular Circulation/drug effects , Male , Brain/metabolism , Brain/drug effects , Brain/blood supply , Humans , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/pharmacology , Mice, Inbred C57BL , Tissue Distribution , Drug Delivery Systems , Mice, Transgenic
2.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38697107

ABSTRACT

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Subject(s)
Immunotherapy , Lipids , RNA , Tumor Microenvironment , Animals , Dogs , Female , Humans , Mice , Antigens, Neoplasm/immunology , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Cell Line, Tumor , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Glioblastoma/therapy , Glioblastoma/immunology , Glioma/therapy , Glioma/immunology , Immunotherapy/methods , Mice, Inbred C57BL , Neoplasms/therapy , Neoplasms/immunology , RNA/chemistry , RNA/therapeutic use , RNA, Messenger/metabolism , RNA, Messenger/genetics , Lipids/chemistry
3.
Cancer Res ; 84(10): 1546-1547, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745496

ABSTRACT

Antibody-based immune checkpoint blockade therapy has revolutionized the field of cancer immunotherapy, yet its efficacy remains limited in immunologically cold tumors. Combining checkpoint inhibitors with costimulatory agonists improves tumoricidal activity of T cells but also can lead to off-target hepatotoxicity. Although bispecific antibodies confer tumor selectivity to alleviate undesirable adverse effects, toxicity concerns persist with increased dosing. In this issue of Cancer Research, Yuwen and colleagues introduce ATG-101, a tetravalent PD-L1×4-1BB bispecific antibody with high programmed death ligand 1 (PD-L1) affinity and low 4-1BB affinity, aiming to mitigate hepatotoxicity. ATG-101 demonstrates PD-L1-dependent 4-1BB activation, leading to selective T-cell activation within the tumor microenvironment. ATG-101 exhibits potent antitumor activity, even in large, immunologically cold, and monotherapy-resistant tumor models. Single-cell RNA sequencing reveals significant shifts of immune cell populations in the tumor microenvironment from protumor to antitumor phenotypes following ATG-101 treatment. In cynomolgus monkeys, no serious cytokine storm and hepatotoxicity are observed after ATG-101 treatment, indicating a broad therapeutic window for ATG-101 in cancer treatment. This study highlights the potential of tetravalent bispecific antibodies in cancer immunotherapy, with implications for various antibody-based treatment modalities across different fields. See related article by Yuwen et al., p. 1680.


Subject(s)
Antibodies, Bispecific , B7-H1 Antigen , Tumor Microenvironment , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Humans , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/therapy , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Macaca fascicularis
4.
Nat Biomed Eng ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641710

ABSTRACT

Intracellular DNA sensors regulate innate immunity and can provide a bridge to adaptive immunogenicity. However, the activation of the sensors in antigen-presenting cells (APCs) by natural agonists such as double-stranded DNAs or cyclic nucleotides is impeded by poor intracellular delivery, serum stability, enzymatic degradation and rapid systemic clearance. Here we show that the hydrophobicity, electrostatic charge and secondary conformation of helical polypeptides can be optimized to stimulate innate immune pathways via endoplasmic reticulum stress in APCs. One of the three polypeptides that we engineered activated two major intracellular DNA-sensing pathways (cGAS-STING (for cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes) and Toll-like receptor 9) preferentially in APCs by promoting the release of mitochondrial DNA, which led to the efficient priming of effector T cells. In syngeneic mouse models of locally advanced and metastatic breast cancers, the polypeptides led to potent DNA-sensor-mediated antitumour responses when intravenously given as monotherapy or with immune checkpoint inhibitors. The activation of multiple innate immune pathways via engineered cationic polypeptides may offer therapeutic advantages in the generation of antitumour immune responses.

5.
Nat Commun ; 14(1): 6610, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857647

ABSTRACT

The recent success of mRNA therapeutics against pathogenic infections has increased interest in their use for other human diseases including cancer. However, the precise delivery of the genetic cargo to cells and tissues of interest remains challenging. Here, we show an adaptive strategy that enables the docking of different targeting ligands onto the surface of mRNA-loaded small extracellular vesicles (sEVs). This is achieved by using a microfluidic electroporation approach in which a combination of nano- and milli-second pulses produces large amounts of IFN-γ mRNA-loaded sEVs with CD64 overexpressed on their surface. The CD64 molecule serves as an adaptor to dock targeting ligands, such as anti-CD71 and anti-programmed cell death-ligand 1 (PD-L1) antibodies. The resulting immunogenic sEVs (imsEV) preferentially target glioblastoma cells and generate potent antitumour activities in vivo, including against tumours intrinsically resistant to immunotherapy. Together, these results provide an adaptive approach to engineering mRNA-loaded sEVs with targeting functionality and pave the way for their adoption in cancer immunotherapy applications.


Subject(s)
Extracellular Vesicles , Glioblastoma , Humans , RNA, Messenger/genetics , Immunotherapy/methods , Extracellular Vesicles/genetics , Electroporation
6.
Front Oncol ; 13: 1123082, 2023.
Article in English | MEDLINE | ID: mdl-37213290

ABSTRACT

Diencephalic tumors tend to be low grade tumors located near several critical structures, including the optic nerves, optic chiasm, pituitary, hypothalamus, Circle of Willis, and hippocampi. In children, damage to these structures can impact physical and cognitive development over time. Thus, the goal of radiotherapy is to maximize long term survival while minimizing late effects, including endocrine disruption leading to precocious puberty, height loss, hypogonadotropic hypogonadism, and primary amenorrhea; visual disruption including blindness; and vascular damage resulting in cerebral vasculopathy. Compared to photon therapy, proton therapy offers the potential to decrease unnecessary dose to these critical structures while maintaining adequate dose to the tumor. In this article, we review the acute and chronic toxicities associated with radiation for pediatric diencephalic tumors, focusing on the use of proton therapy to minimize treatment-related morbidity. Emerging strategies to further reduce radiation dose to critical structures will also be considered.

7.
Clin Transl Radiat Oncol ; 39: 100578, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36935860

ABSTRACT

Purpose: The immune system's role in mediating the cytotoxic effects of chemoradiotherapy remains not completely understood. The integration of immunotherapies into treatment will require insight into features and timing of the immune microenvironment associated with treatment response. Here, we investigated the role of circulating neutrophils and tumor-associated myeloid cells (TSAMs) as potential agents and biomarkers for disease-related outcomes in locally advanced cervical cancer (LACC). Material and Methods: Hematologic parameters for two LACC patient cohorts, a retrospective clinical and a prospective translational cohort, were obtained at baseline, weekly during chemoradiotherapy for the retrospective cohort, biweekly during chemoradiotherapy for the prospective cohort, and at the first follow-up visit for both cohorts (mean 14.7 weeks, range 8.1-25.1 weeks for the prospective cohort and 5.3 weeks with a range of 2.7-9.0 weeks for the retrospective cohort). In both cohorts, baseline as well as mean and lowest on-treatment values for platelets, hemoglobin, absolute neutrophil count (ANC), and absolute lymphocyte count (ALC) were analyzed for correlations with disease-related outcomes. In the prospective cohort, circulating myeloid cells were isolated from peripheral blood mononuclear cells (PBMCs), and TSAMs were isolated from tumor tissue via a novel serial cytobrush sampling assay. The samples were analyzed by flow cytometry. Results: In both cohorts, the only hematologic parameter significantly associated with survival was elevated on-treatment mean ANC (mANC), which was associated with lower local failure-free and overall survival rates in the retrospective and prospective cohorts, respectively. mANC was not associated with a difference in distant metastases. CD11b+CD11c- TSAMs, which act as a surrogate marker for intratumoral neutrophils, steadily decreased during the course of chemoRT and nadier'd at week 5 of treatment. Conversely, circulating myeloid cells identified from PBMCs steadily increased through week 5 of treatment. Regression analysis confirmed an inverse relationship between circulating myeloid cells and TSAMs at this time point. Conclusions: These findings identify on-treatment mean neutrophil count as a predictor of disease-related outcomes, suggest that neutrophils contribute to chemoradiation treatment resistance, and demonstrate the importance of techniques to measure intratumoral immune activity.

8.
medRxiv ; 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36993772

ABSTRACT

Messenger RNA (mRNA) has emerged as a remarkable tool for COVID-19 prevention but its use for induction of therapeutic cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Herein, we develop a facile approach for substantially enhancing immunogenicity of tumor-derived mRNA in lipid-particle (LP) delivery systems. By using mRNA as a molecular bridge with ultrapure liposomes and foregoing helper lipids, we promote the formation of 'onion-like' multi-lamellar RNA-LP aggregates (LPA). Intravenous administration of RNA-LPAs mimics infectious emboli and elicits massive DC/T cell mobilization into lymphoid tissues provoking cancer immunogenicity and mediating rejection of both early and late-stage murine tumor models. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for toll-like receptor engagement, RNA-LPAs stimulate intracellular pathogen recognition receptors (RIG-I) and reprogram the TME thus enabling therapeutic T cell activity. RNA-LPAs were safe in acute/chronic murine GLP toxicology studies and immunologically active in client-owned canines with terminal gliomas. In an early phase first-in-human trial for patients with glioblastoma, we show that RNA-LPAs encoding for tumor-associated antigens elicit rapid induction of pro-inflammatory cytokines, mobilization/activation of monocytes and lymphocytes, and expansion of antigen-specific T cell immunity. These data support the use of RNA-LPAs as novel tools to elicit and sustain immune responses against poorly immunogenic tumors.

9.
Int J Radiat Oncol Biol Phys ; 112(2): 335-341, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34597719

ABSTRACT

PURPOSE: Few studies report outcomes in children treated with radiation for nonmyxopapillary ependymoma of the spinal cord, and little evidence exists to inform decisions regarding target volume and prescription dose. Moreover, virtually no mature outcome data exist on proton therapy for this tumor. We describe our combined institutional experience treating pediatric classical/anaplastic ependymoma of the spinal cord with proton therapy. METHODS AND MATERIALS: Between 2008 and 2019, 14 pediatric patients with nonmetastatic nonmyxopapillary grade II (n = 6) and grade III (n = 8) spinal ependymoma received proton therapy. The median age at radiation was 14 years (range, 1.5-18 years). Five tumors arose within the cervical cord, 3 within the thoracic cord, and 6 within the lumbosacral cord. Before radiation therapy, 3 patients underwent subtotal resection, and 11 underwent gross-total or near total resection. Two patients received chemotherapy. For radiation, the clinical target volume received 50.4 Gy (n = 8), 52.2 (n = 1), or 54 Gy (n = 5), with the latter receiving a boost to the gross tumor volume after the initial 50.4 Gy, modified to respect spinal cord tolerance. RESULTS: With a median follow-up of 6.3 years (range, 1.5-14.8 years), no tumors progressed. Although most patients experienced neurologic sequela after surgery, only 1 developed additional neurologic deficits after radiation: An 18-year-old male who received 54 Gy after gross total resection of a lumbosacral tumor developed grade 2 erectile dysfunction. There were 2 cases of musculoskeletal toxicity attributable to surgery and radiation. At analysis, no patient had developed cardiac, pulmonary, or other visceral organ complications or a second malignancy. CONCLUSION: Radiation to a total dose of 50 to 54 Gy can be safely delivered and plays a beneficial role in the multidisciplinary management of children with nonmyxopapillary spinal cord ependymoma. Proton therapy may reduce late radiation effects and is not associated with unexpected spinal cord toxicity.


Subject(s)
Ependymoma , Proton Therapy , Spinal Cord Neoplasms , Adolescent , Child , Child, Preschool , Ependymoma/pathology , Humans , Infant , Male , Proton Therapy/adverse effects , Proton Therapy/methods , Retrospective Studies , Spinal Cord/radiation effects , Spinal Cord Neoplasms/radiotherapy , Spinal Cord Neoplasms/surgery , Treatment Outcome
10.
J Neurooncol ; 151(1): 29-39, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32757093

ABSTRACT

INTRODUCTION: Brain tumors remain especially challenging to treat due to the presence of the blood-brain barrier. The unique biophysical properties of nanomaterials enable access to the tumor environment with minimally invasive injection methods such as intranasal and systemic delivery. METHODS: In this review, we will discuss approaches taken in NP delivery to brain tumors in preclinical neuro-oncology studies and ongoing clinical studies. RESULTS: Despite recent development of many promising nanoparticle systems to modulate immunologic function in the preclinical realm, clinical work with nanoparticles in malignant brain tumors has largely focused on imaging, chemotherapy, thermotherapy and radiation. CONCLUSION: Review of early preclinical studies and clinical trials provides foundational safety, feasibility and toxicology data that can usher a new wave of nanotherapeutics in application of immunotherapy and translational oncology for patients with brain tumors.


Subject(s)
Brain Neoplasms , Nanoparticles , Adjuvants, Immunologic/therapeutic use , Blood-Brain Barrier , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Drug Delivery Systems , Humans , Immunologic Factors/therapeutic use
11.
Clin Cancer Res ; 26(21): 5689-5700, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32788225

ABSTRACT

PURPOSE: Immunotherapy has been demonstrably effective against multiple cancers, yet tumor escape is common. It remains unclear how brain tumors escape immunotherapy and how to overcome this immune escape. EXPERIMENTAL DESIGN: We studied KR158B-luc glioma-bearing mice during treatment with adoptive cellular therapy (ACT) with polyclonal tumor-specific T cells. We tested the immunogenicity of primary and escaped tumors using T-cell restimulation assays. We used flow cytometry and RNA profiling of whole tumors to further define escape mechanisms. To treat immune-escaped tumors, we generated escape variant-specific T cells through the use of escape variant total tumor RNA and administered these cells as ACT. In addition, programmed cell death protein-1 (PD-1) checkpoint blockade was studied in combination with ACT. RESULTS: Escape mechanisms included a shift in immunogenic tumor antigens, downregulation of MHC class I, and upregulation of checkpoint molecules. Polyclonal T cells specific for escape variants displayed greater recognition of escaped tumors than primary tumors. When administered as ACT, these T cells prolonged median survival of escape variant-bearing mice by 60%. The rational combination of ACT with PD-1 blockade prolonged median survival of escape variant glioma-bearing mice by 110% and was dependent upon natural killer cells and T cells. CONCLUSIONS: These findings suggest that the immune landscape of brain tumors are markedly different postimmunotherapy yet can still be targeted with immunotherapy.


Subject(s)
Glioma/therapy , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/immunology , Tumor Escape/drug effects , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antigens, Neoplasm/immunology , Cell Line, Tumor , Glioma/genetics , Glioma/immunology , Glioma/pathology , Heterografts , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy, Adoptive/adverse effects , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes/drug effects , Tumor Escape/immunology , Tumor Microenvironment/drug effects
12.
Cancer Res ; 80(3): 499-509, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31723000

ABSTRACT

Anti-VEGF therapy prolongs recurrence-free survival in patients with glioblastoma but does not improve overall survival. To address this discrepancy, we investigated immunologic resistance mechanisms to anti-VEGF therapy in glioma models. A screening of immune-associated alterations in tumors after anti-VEGF treatment revealed a dose-dependent upregulation of regulatory T-cell (Treg) signature genes. Enhanced numbers of Tregs were observed in spleens of tumor-bearing mice and later in tumors after anti-VEGF treatment. Elimination of Tregs with CD25 blockade before anti-VEGF treatment restored IFNγ production from CD8+ T cells and improved antitumor response from anti-VEGF therapy. The treated tumors overexpressed the glutamate/cystine antiporter SLC7A11/xCT that led to elevated extracellular glutamate in these tumors. Glutamate promoted Treg proliferation, activation, suppressive function, and metabotropic glutamate receptor 1 (mGlutR1) expression. We propose that VEGF blockade coupled with glioma-derived glutamate induces systemic and intratumoral immunosuppression by promoting Treg overrepresentation and function, which can be pre-emptively overcome through Treg depletion for enhanced antitumor effects. SIGNIFICANCE: Resistance to VEGF therapy in glioblastoma is driven by upregulation of Tregs, combined blockade of VEGF, and Tregs may provide an additive antitumor effect for treating glioblastoma.


Subject(s)
Bevacizumab/pharmacology , Drug Resistance, Neoplasm , Glioblastoma/immunology , Glutamic Acid/metabolism , T-Lymphocytes, Regulatory/immunology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Antineoplastic Agents, Immunological/pharmacology , Apoptosis , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Female , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/metabolism , Tumor Cells, Cultured , Vascular Endothelial Growth Factor A/immunology
13.
ACS Nano ; 13(12): 13884-13898, 2019 12 24.
Article in English | MEDLINE | ID: mdl-31730332

ABSTRACT

Cancer vaccines initiate antitumor responses in a subset of patients, but the lack of clinically meaningful biomarkers to predict treatment response limits their development. Here, we design multifunctional RNA-loaded magnetic liposomes to initiate potent antitumor immunity and function as an early biomarker of treatment response. These particles activate dendritic cells (DCs) more effectively than electroporation, leading to superior inhibition of tumor growth in treatment models. Inclusion of iron oxide enhances DC transfection and enables tracking of DC migration with magnetic resonance imaging (MRI). We show that T2*-weighted MRI intensity in lymph nodes is a strong correlation of DC trafficking and is an early predictor of antitumor response. In preclinical tumor models, MRI-predicted "responders" identified 2 days after vaccination had significantly smaller tumors 2-5 weeks after treatment and lived 73% longer than MRI-predicted "nonresponders". These studies therefore provide a simple, scalable nanoparticle formulation to generate robust antitumor immune responses and predict individual treatment outcome with MRI.


Subject(s)
Antineoplastic Agents/pharmacology , Dendritic Cells/metabolism , Magnetic Resonance Imaging , Magnetite Nanoparticles/chemistry , Animals , Biomarkers, Tumor/metabolism , Cancer Vaccines/immunology , Cell Line, Tumor , Cell Movement/drug effects , Cell Tracking , Dendritic Cells/drug effects , Electroporation , Ferric Compounds/chemistry , Magnetite Nanoparticles/ultrastructure , Mice, Inbred C57BL , Transfection
14.
Nat Commun ; 10(1): 4016, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31488817

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy targeting solid tumors has stagnated as a result of tumor heterogeneity, immunosuppressive microenvironments, and inadequate intratumoral T cell trafficking and persistence. Early (≤3 days) intratumoral presentation of CAR T cells post-treatment is a superior predictor of survival than peripheral persistence. Therefore, we have co-opted IL-8 release from tumors to enhance intratumoral T-cell trafficking through a CAR design for maximal antitumor activity in solid tumors. Here, we demonstrate that IL-8 receptor, CXCR1 or CXCR2, modified CARs markedly enhance migration and persistence of T cells in the tumor, which induce complete tumor regression and long-lasting immunologic memory in pre-clinical models of aggressive tumors such as glioblastoma, ovarian and pancreatic cancer.


Subject(s)
Glioblastoma/immunology , Immunotherapy, Adoptive , Interleukin-8/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8B/metabolism , T-Lymphocytes/immunology , Animals , Antigens, Neoplasm/immunology , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cytokines/metabolism , Disease Models, Animal , Female , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Mice, Inbred NOD , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
15.
J Hematol Oncol ; 12(1): 78, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31311607

ABSTRACT

While promising, immunotherapy has yet to be fully unlocked for the preponderance of cancers where conventional chemoradiation reigns. This remains particularly evident in pediatric sarcomas where standard of care has not appreciably changed in decades. Importantly, pediatric bone sarcomas, like osteosarcoma and Ewing's sarcoma, possess unique tumor microenvironments driven by distinct molecular features, as do rhabdomyosarcomas and soft tissue sarcomas. A better understanding of each malignancy's biology, heterogeneity, and tumor microenvironment may lend new insights toward immunotherapeutic targets in novel platform technologies for cancer vaccines and adoptive cellular therapy. These advances may pave the way toward new treatments requisite for pediatric sarcomas and patients in need of new therapies.


Subject(s)
Immunotherapy/methods , Sarcoma/drug therapy , Adolescent , Child , Child, Preschool , Female , Humans , Male , Tumor Microenvironment
16.
Vaccine ; 37(10): 1313-1324, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30686636

ABSTRACT

BACKGROUND: The immunomodulatory effects of statins on vaccine response remain uncertain. Therefore, the objective of this study was to determine if atorvastatin enhances pneumococcal-specific antibody titer following 23-valent pneumococcal polysaccharide vaccination. METHODS: Double-blind, placebo-controlled, single-center randomized clinical trial entitled StatVax. Subjects were enrolled between June and July 2014 and followed up through September 2014. 33 healthy volunteers signed informed consent after volunteer sampling. 11 participants were excluded; 22 healthy volunteers without prior pneumococcal vaccination were enrolled and completed the study. Participants were randomized to receive a 28-day course of 40 mg atorvastatin (n = 12) or matching lactose placebo (n = 10). On day 7 of treatment, Pneumovax 23 was administered intramuscularly. The primary outcome was fold change in total pneumococcal-specific antibody titer determined by a ratio of post-vaccination titer over baseline titer. Secondary outcomes included serotype-specific pneumococcal antibody titer, seroconversion, complete blood counts (CBC), erythrocyte sedimentation rate (ESR), and serum cytokine analysis. RESULTS: Of the 22 randomized patients (mean age, 23.86; SD, 4.121; 11 women [50%]), 22 completed the trial. Total anti-pneumococcal antibody titer in the atorvastatin group went from a baseline mean of 32.58 (SD, 15.96) to 147.7 (SD, 71.52) µg/mL at 21 days post-vaccination while titer in the placebo group went from a mean of 30.81 (SD, 13.04) to 104.4 (SD, 45) µg/mL. When comparing fold change between treatment groups, there was a significant increase in fold change of total anti-pneumococcal antibody titer in the atorvastatin group compared to the placebo group (2-way ANOVA, p = .0177). CONCLUSIONS: Atorvastatin enhances antigen-specific primary humoral immune response to a T cell-independent pneumonia vaccination. Pending confirmation by larger cohort studies of target populations, peri-vaccination conventional doses of statins can become a novel adjuvant for poorly-immunogenic polysaccharide-based vaccines. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT02097589.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antibodies, Bacterial/blood , Anticholesteremic Agents/immunology , Atorvastatin/immunology , Immunity, Humoral , Pneumococcal Vaccines/immunology , Adult , Antibody Formation , Anticholesteremic Agents/administration & dosage , Atorvastatin/administration & dosage , Cytokines/blood , Double-Blind Method , Female , Healthy Volunteers , Humans , Male , Pneumococcal Vaccines/administration & dosage , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/prevention & control , Streptococcus pneumoniae , Vaccination , Young Adult
17.
Nano Lett ; 18(10): 6195-6206, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30259750

ABSTRACT

Translation of nanoparticles (NPs) into human clinical trials for patients with refractory cancers has lagged due to unknown biologic reactivities of novel NP designs. To overcome these limitations, simple well-characterized mRNA lipid-NPs have been developed as cancer immunotherapeutic vaccines. While the preponderance of RNA lipid-NPs encoding for tumor-associated antigens or neoepitopes have been designed to target lymphoid organs, they remain encumbered by the profound intratumoral and systemic immunosuppression that may stymie an activated T cell response. Herein, we show that systemic localization of untargeted tumor RNA (derived from whole transcriptome) encapsulated in lipid-NPs, with excess positive charge, primes the peripheral and intratumoral milieu for response to immunotherapy. In immunologically resistant tumor models, these RNA-NPs activate the preponderance of systemic and intratumoral myeloid cells (characterized by coexpression of PD-L1 and CD86). Addition of immune checkpoint inhibitors (ICIs) (to animals primed with RNA-NPs) augments peripheral/intratumoral PD-1+CD8+ cells and mediates synergistic antitumor efficacy in settings where ICIs alone do not confer therapeutic benefit. These synergistic effects are mediated by type I interferon released from plasmacytoid dendritic cells (pDCs). In translational studies, personalized mRNA-NPs were safe and active in a client-owned canine with a spontaneous malignant glioma. In summary, we demonstrate widespread immune activation from tumor loaded RNA-NPs concomitant with inducible PD-L1 expression that can be therapeutically exploited. While immunotherapy remains effective for only a subset of cancer patients, combination therapy with systemic immunomodulating RNA-NPs may broaden its therapeutic potency.


Subject(s)
Glioma/drug therapy , Immunotherapy , Lipids/administration & dosage , Nanoparticles/administration & dosage , Precision Medicine , Animals , B7-2 Antigen/antagonists & inhibitors , B7-2 Antigen/genetics , B7-2 Antigen/immunology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Dendritic Cells/immunology , Disease Models, Animal , Dogs , Glioma/immunology , Glioma/pathology , Glioma/veterinary , Humans , Lipids/chemistry , Lipids/immunology , Lymphocyte Activation/immunology , Nanoparticles/chemistry , RNA, Neoplasm/chemistry , RNA, Neoplasm/genetics , RNA, Neoplasm/immunology , Transcriptome/genetics
18.
Clin Cancer Res ; 24(16): 3955-3966, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29712687

ABSTRACT

Purpose: Adoptive T-cell immunotherapy (ACT) has emerged as a viable therapeutic for peripheral and central nervous system (CNS) tumors. In peripheral cancers, optimal efficacy of ACT is reliant on dendritic cells (DCs) in the tumor microenvironment. However, the CNS is largely devoid of resident migratory DCs to function as antigen-presenting cells during immunotherapy. Herein, we demonstrate that cellular interactions between adoptively transferred tumor-reactive T cells and bone marrow-derived hematopoietic stem and progenitor cells (HSPCs) lead to the generation of potent intratumoral DCs within the CNS compartment.Experimental Design: We evaluated HSPC differentiation during ACT in vivo in glioma-bearing hosts and HSPC proliferation and differentiation in vitro using a T-cell coculture system. We utilized FACS, ELISAs, and gene expression profiling to study the phenotype and function of HSPC-derived cells ex vivo and in vivo To demonstrate the impact of HSPC differentiation and function on antitumor efficacy, we performed survival experiments.Results: Transfer of HSPCs with concomitant ACT led to the production of activated CD86+CD11c+MHCII+ cells consistent with DC phenotype and function within the brain tumor microenvironment. These intratumoral DCs largely supplanted abundant host myeloid-derived suppressor cells. We determined that during ACT, HSPC-derived cells in gliomas rely on T-cell-released IFNγ to differentiate into DCs, activate T cells, and reject intracranial tumors.Conclusions: Our data support the use of HSPCs as a novel cellular therapy. Although DC vaccines induce robust immune responses in the periphery, our data demonstrate that HSPC transfer uniquely generates intratumoral DCs that potentiate T-cell responses and promote glioma rejection in situClin Cancer Res; 24(16); 3955-66. ©2018 AACR.


Subject(s)
Central Nervous System Neoplasms/therapy , Glioma/therapy , Hematopoietic Stem Cells/immunology , Immunotherapy, Adoptive , Animals , B7-2 Antigen/immunology , CD11c Antigen/immunology , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/immunology , Central Nervous System Neoplasms/pathology , Coculture Techniques , Dendritic Cells/immunology , Dendritic Cells/transplantation , Disease Models, Animal , Gene Expression Regulation, Neoplastic/genetics , Glioma/genetics , Glioma/immunology , Glioma/pathology , Hematopoietic Stem Cells/metabolism , Histocompatibility Antigens Class II/immunology , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology
19.
Oncoimmunology ; 6(10): e1290036, 2017.
Article in English | MEDLINE | ID: mdl-29123947

ABSTRACT

Conventional cancer treatments remain insufficient to treat many therapy-resistant tumors.1 Cancer vaccines attempt to overcome this resistance by activating the patient's immune system to eliminate tumor cells without the toxicity of systemic chemotherapy and radiation. Nanoparticles (NPs) are promising as customizable, immunostimulatory carriers to protect and deliver antigen. Although many NP vaccines have been investigated in preclinical settings, a few have advanced into clinical application, and still fewer have demonstrated clinical benefit. This review incorporates observations from NP vaccines that have been evaluated in early phase clinical trials to make recommendations for the next generation of NP-based cancer vaccines.

20.
Oncoimmunology ; 6(1): e1256527, 2017.
Article in English | MEDLINE | ID: mdl-28197373

ABSTRACT

While RNA-pulsed dendritic cell (DC) vaccines have shown promise, the advancement of cellular therapeutics is fraught with developmental challenges. To circumvent the challenges of cellular immunotherapeutics, we developed clinically translatable nanoliposomes that can be combined with tumor-derived RNA to generate personalized tumor RNA-nanoparticles (NPs) with considerable scale-up capacity. RNA-NPs bypass MHC restriction, are amenable to central distribution, and can provide near immediate immune induction. We screened commercially available nanoliposomal preparations and identified the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as an efficient mRNA courier to antigen-presenting cells (APCs). When administered intravenously, RNA-NPs mediate systemic activation of APCs in reticuloendothelial organs such as the spleen, liver, and bone marrow. RNA-NPs increase percent expression of MHC class I/II, B7 co-stimulatory molecules, and maturation markers on APCs (all vital for T-cell activation). RNA-NPs also increase activation markers on tumor APCs and elicit potent expansion of antigen-specific T-cells superior to peptide vaccines formulated in complete Freund's adjuvant. We demonstrate that both model antigen-encoding and physiologically-relevant tumor-derived RNA-NPs expand potent antitumor T-cell immunity. RNA-NPs were shown to induce antitumor efficacy in a vaccine model and functioned as a suitable alternative to DCs in a stringent cellular immunotherapy model for a radiation/temozolomide resistant invasive murine high-grade glioma. Although cancer vaccines have suffered from weak immunogenicity, we have advanced a RNA-NP formulation that systemically activates host APCs precipitating activated T-cell frequencies necessary to engender antitumor efficacy. RNA-NPs can thus be harnessed as a more feasible and effective immunotherapy to re-program host-immunity.

SELECTION OF CITATIONS
SEARCH DETAIL
...