Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Mol Diagn ; 24(4): 320-336, 2022 04.
Article in English | MEDLINE | ID: mdl-35121140

ABSTRACT

Previous studies have described reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal/oropharyngeal swab and saliva samples. This multisite clinical evaluation describes the validation of an improved sample preparation method for extraction-free RT-LAMP and reports clinical performance of four RT-LAMP assay formats for SARS-CoV-2 detection. Direct RT-LAMP was performed on 559 swabs and 86,760 saliva samples and RNA RT-LAMP on extracted RNA from 12,619 swabs and 12,521 saliva samples from asymptomatic and symptomatic individuals across health care and community settings. For direct RT-LAMP, overall diagnostic sensitivity (DSe) was 70.35% (95% CI, 63.48%-76.60%) on swabs and 84.62% (95% CI, 79.50%-88.88%) on saliva, with diagnostic specificity of 100% (95% CI, 98.98%-100.00%) on swabs and 100% (95% CI, 99.72%-100.00%) on saliva, compared with quantitative RT-PCR (RT-qPCR); analyzing samples with RT-qPCR ORF1ab CT values of ≤25 and ≤33, DSe values were 100% (95% CI, 96.34%-100%) and 77.78% (95% CI, 70.99%-83.62%) for swabs, and 99.01% (95% CI, 94.61%-99.97%) and 87.61% (95% CI, 82.69%-91.54%) for saliva, respectively. For RNA RT-LAMP, overall DSe and diagnostic specificity were 96.06% (95% CI, 92.88%-98.12%) and 99.99% (95% CI, 99.95%-100%) for swabs, and 80.65% (95% CI, 73.54%-86.54%) and 99.99% (95% CI, 99.95%-100%) for saliva, respectively. These findings demonstrate that RT-LAMP is applicable to a variety of use cases, including frequent, interval-based direct RT-LAMP of saliva from asymptomatic individuals who may otherwise be missed using symptomatic testing alone.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva , Sensitivity and Specificity
2.
Clin Microbiol Infect ; 27(9): 1348.e1-1348.e7, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33901668

ABSTRACT

OBJECTIVES: Rapid, high throughput diagnostics are a valuable tool, allowing the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in populations so as to identify and isolate people with asymptomatic and symptomatic infections. Reagent shortages and restricted access to high throughput testing solutions have limited the effectiveness of conventional assays such as quantitative RT-PCR (RT-qPCR), particularly throughout the first months of the coronavirus disease 2019 pandemic. We investigated the use of LamPORE, where loop-mediated isothermal amplification (LAMP) is coupled to nanopore sequencing technology, for the detection of SARS-CoV-2 in symptomatic and asymptomatic populations. METHODS: In an asymptomatic prospective cohort, for 3 weeks in September 2020, health-care workers across four sites (Birmingham, Southampton, Basingstoke and Manchester) self-swabbed with nasopharyngeal swabs weekly and supplied a saliva specimen daily. These samples were tested for SARS-CoV-2 RNA using the Oxford Nanopore LamPORE system and a reference RT-qPCR assay on extracted sample RNA. A second retrospective cohort of 848 patients with influenza-like illness from March 2020 to June 2020 were similarly tested from nasopharyngeal swabs. RESULTS: In the asymptomatic cohort a total of 1200 participants supplied 23 427 samples (3966 swab, 19 461 saliva) over a 3-week period. The incidence of SARS-CoV-2 detection using LamPORE was 0.95%. Diagnostic sensitivity and specificity of LamPORE was >99.5% (decreasing to approximately 98% when clustered estimation was used) in both swab and saliva asymptomatic samples when compared with the reference RT-qPCR test. In the retrospective symptomatic cohort, the incidence was 13.4% and the sensitivity and specificity were 100%. CONCLUSIONS: LamPORE is a highly accurate methodology for the detection of SARS-CoV-2 in both symptomatic and asymptomatic population settings and can be used as an alternative to RT-qPCR.


Subject(s)
COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pandemics , SARS-CoV-2/isolation & purification , COVID-19/virology , Cohort Studies , Coronavirus Nucleocapsid Proteins/genetics , Humans , Limit of Detection , Nanopore Sequencing , Nasopharynx/virology , Polyproteins/genetics , Prospective Studies , Reproducibility of Results , Retrospective Studies , SARS-CoV-2/genetics , Saliva/virology , Sensitivity and Specificity , Viral Proteins/genetics
3.
J Infect ; 82(1): 117-125, 2021 01.
Article in English | MEDLINE | ID: mdl-33271166

ABSTRACT

The COVID-19 pandemic has illustrated the importance of simple, rapid and accurate diagnostic testing. This study describes the validation of a new rapid SARS-CoV-2 RT-LAMP assay for use on extracted RNA or directly from swab offering an alternative diagnostic pathway that does not rely on traditional reagents that are often in short supply during a pandemic. Analytical specificity (ASp) of this new RT-LAMP assay was 100% and analytical sensitivity (ASe) was between 1 × 101 and 1 × 102 copies per reaction when using a synthetic DNA target. The overall diagnostic sensitivity (DSe) and specificity (DSp) of RNA RT-LAMP was 97% and 99% respectively, relative to the standard of care rRT-PCR. When a CT cut-off of 33 was employed, above which increasingly evidence suggests there is a low risk of patients shedding infectious virus, the diagnostic sensitivity was 100%. The DSe and DSp of Direct RT-LAMP (that does not require RNA extraction) was 67% and 97%, respectively. When setting CT cut-offs of ≤33 and ≤25, the DSe increased to 75% and 100%, respectively, time from swab-to-result, CT < 25, was < 15 min. We propose that RNA RT-LAMP could replace rRT-PCR where there is a need for increased sample throughput and Direct RT-LAMP as a near-patient screening tool to rapidly identify highly contagious individuals within emergency departments and care homes during times of increased disease prevalence ensuring negative results still get laboratory confirmation.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/analysis , SARS-CoV-2/genetics , Clinical Laboratory Techniques/methods , Humans , Mass Screening/methods , Real-Time Polymerase Chain Reaction , Saliva/virology , Sensitivity and Specificity
4.
Nat Rev Drug Discov ; 11(3): 185-6, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22378262

ABSTRACT

In November 2011, tafamidis (Vyndaqel; Pfizer), a small molecule that inhibits the dissociation of transthyretin tetramers, was granted marketing authorization by the European Commission for the treatment of transthyretin amyloidosis in adult patients with stage 1 symptomatic polyneuropathy to delay peripheral neurological impairment.


Subject(s)
Amyloid Neuropathies/drug therapy , Benzoxazoles/therapeutic use , Prealbumin/antagonists & inhibitors , Amyloid Neuropathies/metabolism , Animals , Benzoxazoles/chemistry , Benzoxazoles/metabolism , Clinical Trials as Topic/trends , Humans , Prealbumin/metabolism
5.
Nat Rev Drug Discov ; 11(4): 269-70, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22460118

ABSTRACT

In November 2011, aflibercept (Eylea; Regeneron Pharmaceuticals), a recombinant fusion protein that binds to members of the vascular endothelial growth factor family, was approved by the US Food and Drug Administration (FDA) for the treatment of patients with neovascular age-related macular degeneration.


Subject(s)
Recombinant Fusion Proteins/therapeutic use , Wet Macular Degeneration/drug therapy , Clinical Trials, Phase III as Topic , Double-Blind Method , Humans , Randomized Controlled Trials as Topic , Receptors, Vascular Endothelial Growth Factor , Recombinant Fusion Proteins/adverse effects , United States , United States Food and Drug Administration
6.
Nat Rev Drug Discov ; 10(10): 729-30, 2011 09 30.
Article in English | MEDLINE | ID: mdl-21959281

ABSTRACT

Ezogabine (Potiga; Valeant Pharmaceuticals/GlaxoSmithKline), a potassium channel opener, was approved in June 2011 by the U.S. Food and Drug Administration (F.D.A.) for the adjunctive treatment of partial-onset seizures in adult patients. The same drug was granted marketing authorization for this indication in the European Union in March 2011, where it is known as retigabine (Trobalt).


Subject(s)
Anticonvulsants/chemistry , Anticonvulsants/therapeutic use , Carbamates/chemistry , Carbamates/therapeutic use , Epilepsies, Partial/drug therapy , Phenylenediamines/chemistry , Phenylenediamines/therapeutic use , Animals , Anticonvulsants/pharmacokinetics , Carbamates/pharmacokinetics , Epilepsies, Partial/metabolism , Humans , Phenylenediamines/pharmacokinetics , Randomized Controlled Trials as Topic/methods
8.
Nucleic Acids Res ; 39(7): 2593-603, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21112870

ABSTRACT

Mismatch uracil DNA glycosylase (Mug) from Escherichia coli is an initiating enzyme in the base-excision repair pathway. As with other DNA glycosylases, the abasic product is potentially more harmful than the initial lesion. Since Mug is known to bind its product tightly, inhibiting enzyme turnover, understanding how Mug binds DNA is of significance when considering how Mug interacts with downstream enzymes in the base-excision repair pathway. We have demonstrated differential binding modes of Mug between its substrate and abasic DNA product using both band shift and fluorescence anisotropy assays. Mug binds its product cooperatively, and a stoichiometric analysis of DNA binding, catalytic activity and salt-dependence indicates that dimer formation is of functional significance in both catalytic activity and product binding. This is the first report of cooperativity in the uracil DNA glycosylase superfamily of enzymes, and forms the basis of product inhibition in Mug. It therefore provides a new perspective on abasic site protection and the findings are discussed in the context of downstream lesion processing and enzyme communication in the base excision repair pathway.


Subject(s)
DNA Repair , DNA/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Thymine DNA Glycosylase/metabolism , Uracil-DNA Glycosidase/metabolism , Binding, Competitive , DNA/chemistry , DNA Damage , Fluorescence Polarization , Protein Binding , Sodium Chloride/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...