Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806065

ABSTRACT

Hydroxytyrosol (HT), the main representative of polyphenols of olive oil, has been described as one of the most powerful natural antioxidants, also showing anti-inflammatory, antimicrobial, cardioprotective and anticancer activity in different type of cancers, but has been little studied in hematological neoplasms. The objective of this work was to evaluate the anticancer potential of HT in acute human leukemia T cells (Jurkat and HL60) and the anti-inflammatory potential in murine macrophages (Raw264.7). For this, cytotoxicity tests were performed for HT, showing IC50 values, at 24 h, for Jurkat, HL60 and Raw264.7 cells, of 27.3 µg·mL-1, 109.8 µg·mL-1 and 45.7 µg·mL-1, respectively. At the same time, HT caused cell arrest in G0/G1 phase in both Jurkat and HL60 cells by increasing G0/G1 phase and significantly decreasing S phase. Apoptosis and cell cycle assays revealed an antiproliferative effect of HT, decreasing the percentage of dividing cells and increasing apoptosis. Furthermore, HT inhibited the PI3K signaling pathway and, consequently, the MAPK pathway was activated. Inflammation tests revealed that HT acts as an anti-inflammatory agent, reducing NO levels in Raw264.7 cells previously stimulated by lipopolysaccharide (LPS). These processes were confirmed by the changes in the expression of the main markers of inflammation and cancer. In conclusion, HT has an anticancer and anti-inflammatory effect in the cell lines studied, which were Raw264.7, Jurkat, and HL60, and could be used as a natural drug in the treatment of liquid cancers, leukemias, myelomas and lymphomas.


Subject(s)
Chaperonin 60/metabolism , Olea , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Apoptosis , Humans , Inflammation/drug therapy , Mice , Phenylethyl Alcohol/analogs & derivatives , Phosphatidylinositol 3-Kinases , Polyphenols/pharmacology , Polyphenols/therapeutic use , Proto-Oncogene Proteins c-akt , Signal Transduction
2.
Methods Mol Biol ; 2471: 301-307, 2022.
Article in English | MEDLINE | ID: mdl-35175605

ABSTRACT

Tissue culture has evolved considerably over the last few years, including cell culture in three dimensions, organoids, cocultures of different cell types and the use of diverse types of matrices in an attempt to mimic conditions that more closely resemble those found in the original tissue or organ. In this chapter, we describe how patient-derived breast tissue can be cultured on sponges for several days, maintaining their original architecture and with the capacity to respond to treatments. This protocol facilitates the study of the tissue responses without the need for extensive tissue manipulation, cell digestion or use of a biomaterial as scaffold, while maintaining the stroma and extracellular matrix organization. This method has the potential to improve preclinical testing by contributing to provide more accurate data reflecting cell-cell and cell-matrix interactions, tumor microenvironment, drug effects or stem cell function in normal- and pathophysiology of the breast.


Subject(s)
Breast Neoplasms , Organoids , Breast Neoplasms/pathology , Cell Culture Techniques/methods , Female , Humans , Organoids/metabolism , Stem Cells , Tumor Microenvironment
3.
Molecules ; 25(18)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947962

ABSTRACT

Natural products have a significant role in the development of new drugs, being relevant the pentacyclic triterpenes extracted from Olea europaea L. Anticancer effect of uvaol, a natural triterpene, has been scarcely studied. The aim of this study was to understand the anticancer mechanism of uvaol in the HepG2 cell line. Cytotoxicity results showed a selectivity effect of uvaol with higher influence in HepG2 than WRL68 cells used as control. Our results show that uvaol has a clear and selective anticancer activity in HepG2 cells supported by a significant anti-migratory capacity and a significant increase in the expression of HSP-60. Furthermore, the administration of this triterpene induces cell arrest in the G0/G1 phase, as well as an increase in the rate of cell apoptosis. These results are supported by a decrease in the expression of the anti-apoptotic protein Bcl2, an increase in the expression of the pro-apoptotic protein Bax, together with a down-regulation of the AKT/PI3K signaling pathway. A reduction in reactive oxygen species (ROS) levels in HepG2 cells was also observed. Altogether, results showed anti-proliferative and pro-apoptotic effect of uvaol on hepatocellular carcinoma, constituting an interesting challenge in the development of new treatments against this type of cancer.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Triterpenes/pharmacology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Movement/drug effects , Cell Survival/drug effects , Hep G2 Cells , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Olea/chemistry , Olea/metabolism , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Triterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...