Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Histol Histopathol ; 27(12): 1599-610, 2012 12.
Article in English | MEDLINE | ID: mdl-23059890

ABSTRACT

Fluoxetine shows controversial lung effects as it prevents pulmonary hypertension in adult rats but exposure during gestation causes pulmonary hypertension in neonatal rats. In the present study, we tested the null hypothesis that the antidepressant drug fluoxetine does not modify the development of bronchopulmonary dysplasia (BPD) in neonatal rats. Experimental categories included I: room air (controls) with daily injection of saline; II: room air with daily injection of 10 mg/kg fluoxetine, i.p., during two weeks; III: 60% oxygen with daily injection of saline; and IV: 60% oxygen with daily injection of 10 mg/kg fluoxetine, i.p., during two weeks. Hyperoxia resulted in significant reduction in alveolar density and an increase in pulmonary endocrine cells, as well as increases in muscle layer areas of bronchi and arteries. Fluoxetine treatment generated a further increase in muscularisation and did not significantly modify the hyperoxia-induced reductions in alveolar density and increases in the endocrine cells. In hyperoxia, Real-Time PCR showed a lower pulmonary expression of vascular endothelial growth factor (VEGF) with no significant changes in the expression of matrix metalloproteinases (MMP) 2 and 12. Fluoxetine did not affect VEGF or MMP-2 expression but it significantly increased MMP-12 mRNA in both normoxic and hyperoxic groups. Zymographic analysis of MMP-2 activity in bronchoalveolar fluid showed a significantly reduced MMP-2 activity in hyperoxia, while fluoxetine treatment restored MMP-2 activity to levels comparable with the normoxic group. In conclusion, our data show that fluoxetine may worsen bronchial and arterial muscularisation during development of BPD and may up-regulate MMP expression or activity.


Subject(s)
Antidepressive Agents, Second-Generation/toxicity , Fluoxetine/toxicity , Hyperoxia/complications , Lung Injury/etiology , Selective Serotonin Reuptake Inhibitors/toxicity , Animals , Animals, Newborn , Base Sequence , Bronchopulmonary Dysplasia/etiology , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/pathology , Disease Models, Animal , Female , Humans , Hyperoxia/genetics , Hyperoxia/metabolism , Infant, Newborn , Lung Injury/genetics , Lung Injury/metabolism , Lung Injury/pathology , Matrix Metalloproteinase 12/genetics , Matrix Metalloproteinase 12/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Neuroendocrine Cells/drug effects , Neuroendocrine Cells/metabolism , Neuroendocrine Cells/pathology , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Respiratory Muscles/drug effects , Respiratory Muscles/pathology , Ubiquitin Thiolesterase/metabolism , Up-Regulation/drug effects , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
4.
Minerva Med ; 73(49-50): 3475-6, 1982 Dec 22.
Article in Italian | MEDLINE | ID: mdl-7155395

ABSTRACT

In order to evaluate the possible effects of diagnostically employed ultrasounds on DNA turnover, 35 Wistar strain rats were subjected to an ultrasonic frequency band of 2.25 MHz for exposure times varying from 10 to 500 seconds. Upon administration of thymidine tritiate, it was observed that capacity to absorb the substance remained largely normal in those rats exposed for up to 40 seconds, but was diminished where longer exposure times were employed.


Subject(s)
Liver/cytology , Thymidine/metabolism , Ultrasonics/adverse effects , Animals , DNA/biosynthesis , Liver/metabolism , Rats , Rats, Inbred Strains , Time Factors , Tritium , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...