Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 30(39): 90318-90327, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36370310

ABSTRACT

Hydrothermal carbonization (HTC) was employed to convert cannabis waste into valuable solid fuel (hydrochar) under different operating conditions, including reaction temperature (170-230 °C), biomass-water ratio (1:10-1:20), and residence time of 60 min. The produced hydrochar was examined for their fuel properties including calorific value (HHV), proximate and ultimate analysis, thermal stability and combustion behavior, etc. The results revealed higher HTC temperature led to a higher degree of carbonization, which is beneficial for increasing carbon content and HHV of the hydrochar. The HHV of the hydrochar improved significantly up to 24.65 MJ/kg after the HTC compared to 17.50 MJ/kg for cannabis waste. The energy yield of hydrochar from the HTC process was in a range of 70.41-82.23%. The optimal HTC condition was observed at 230 °C and a biomass-water ratio of 1:10, producing high-quality hydrochar with 24.24 MJ/kg HHV and 72.28% energy yield. The hydrochar had similar fuel characteristics to lignite coal with significantly lower ash content. Additionally, recirculation of liquid effluent showed a positive influence on the HHV of hydrochar besides minimizing the release of wastewater from the HTC process. The study revealed that HTC is a promising technique for valorization of cannabis waste into high-value solid fuel, which can be potentially an alternative to coal.


Subject(s)
Cannabis , Carbon , Water , Temperature , Coal
2.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35159819

ABSTRACT

The photocatalytic reduction of carbon dioxide (CO2) into value-added chemicals is considered to be a green and sustainable technology, and has recently gained considerable research interest. In this work, titanium dioxide (TiO2) supported Pt, Pd, Ni, and Cu catalysts were synthesized by photodeposition. The formation of various metal species on an anatase TiO2 surface, after ultraviolet (UV) light irradiation, was investigated insightfully by the X-ray absorption near edge structure (XANES) technique. CO2 reduction under UV-light irradiation at an ambient pressure was demonstrated. To gain an insight into the charge recombination rate during reduction, the catalysts were carefully investigated by the intensity modulated photocurrent spectroscopy (IMPS) and photoluminescence spectroscopy (PL). The catalytic behaviors of the catalysts were investigated by density functional theory using the self-consistent Hubbard U-correction (DFT+U) approach. In addition, Mott-Schottky measurement was employed to study the effect of energy band alignment of metal-semiconductor on CO2 photoreduction. Heterojunction formed at Pt-, Pd-, Ni-, and Cu-TiO2 interface has crucial roles on the charge recombination and the catalytic behaviors. Furthermore, it was found that Pt-TiO2 provides the highest methanol yield of 17.85 µmol/gcat/h, and CO as a minor product. According to the IMPS data, Pt-TiO2 has the best charge transfer ability, with the mean electron transit time of 4.513 µs. We believe that this extensive study on the junction between TiO2 could provide a profound understanding of catalytic behaviors, which will pave the way for rational designs of novel catalysts with improved photocatalytic performance for CO2 reduction.

3.
Sci Total Environ ; 728: 138782, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32570332

ABSTRACT

The removal of gaseous hydrochloric acid (HCl) in refineries and petrochemical plants is essential to prevent potential catalyst poisoning, equipment corrosion, and several associated public health and environmental hazards when the acid contaminates the hydrogen-hydrocarbon feedstock. In the present work, the effect of alkanes, alkenes, and liquid aromatic hydrocarbons on the removal of HCl from refinery off-gas using zeolite NaY was evaluated. Zeolite NaY was synthesized from rice husks via a hydrothermal route. Adsorbent characterization analyses such as XRD, SEM-EDS, FT-IR, BET and particle size distribution were employed. Fixed-bed experiments were operated under feed condition of 600 ppm HCl and gas hourly space velocity of 640 mL/h·cm3. Gaseous HCl was combined with H2, H2-alkanes and H2-alkenes to simulate the main components of refinery-off gas. Experimental breakthrough curves were used to determine the adsorption capacities of zeolite NaY pellets at breakthrough and saturation. HCl removal by fresh zeolite NaY was inhibited by light alkanes but improved in the presence of alkenes. The adsorption capacity at breakthrough for fresh zeolite with combined hydrogen and light alkenes was measured at 0.1507 g/g. In the presence of aromatics, significant reduction in adsorption capacities to 0.1247, 0.1379 and 0.1437 g/g were obtained for adsorbents subjected to H2, H2-alkanes and H2-alkenes respectively. Zeolite NaY consistently showed higher performance for HCl removal in the presence of H2 feed mixed with light hydrocarbons compared with a commercial adsorbent.

4.
Bioresour Technol ; 209: 23-30, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26946437

ABSTRACT

This study characterized the fouling of a novel circular-disc ultrafiltration membrane in a submerged bioreactor system to harvest Arthrospira maxima cells. Flux-stepping study showed that the value of critical flux was below the smallest flux tested at 28.8lm(-2)h(-1), and that the membrane was to operate above the critical flux to sustain the necessary rate of cell concentration. The membrane with similar pore size but greater pore density experienced not only lesser degree of total resistance, but also possessed smaller fraction of irreversible resistance. Membrane fouling was mainly attributed to fragmented cells rather than to soluble or extracellular polymeric substances. Furthermore, flux recovery studies demonstrated that membrane relaxation and surface cleaning could partially recover fluxes for both low (6gl(-1)) and high (40gl(-1)) cell densities, whereas backwashing could fully recover fluxes. Calculation of energy consumption and cell harvesting productivity also favoured membrane filtration with backwashing.


Subject(s)
Membranes, Artificial , Microalgae/isolation & purification , Spirulina/isolation & purification , Ultrafiltration/methods , Biofouling , Bioreactors , Filtration
5.
Environ Sci Pollut Res Int ; 23(6): 5538-48, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26573315

ABSTRACT

Selective adsorbent of benzene, toluene, ethylbenzene, and xylenes (BTEX) was developed based on mesoporous silica materials, RH-MCM-41. It was synthesized from rice husk silica and modified by silane reagents. The silane reagents used in this study were trimethylchlorosilane (TMS), triisopropylchlorosilane (TIPS), and phenyldimethylchlorosilane (PDMS). Physiochemical properties of synthesized materials were characterized by small-angle X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), and surface area analysis. Materials packed in passive air sampler were tested for BTEX uptake capacity. The tests were carried out under an influence of relative humidity (25 to 99 %). Overall, RH-MCM-41 modified by TMS outperformed compared to those modified by other silane agents. The comparative BTEX adsorption on this material and commercial graphitized carbon black was reported.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Oryza/chemistry , Silicon Dioxide/chemistry , Adsorption , Benzene/analysis , Benzene Derivatives/analysis , Humidity , Silanes , Toluene/analysis , Xylenes/analysis
6.
J Air Waste Manag Assoc ; 65(7): 828-36, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26079556

ABSTRACT

UNLABELLED: In this study, 10% CuO/Al2O3 catalyst was used in a catalytic wet-air oxidation process to remove chemical oxygen demand (COD) and color from experimentally designed wastewater containing lignin. The catalyst was prepared using an impregnation method and was characterized by X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), and Brunauer-Emmett-Teller method (BET) for surface area before use. A series of Box-Behnken design (BBD) experiments were used to identify the conditions (temperature, pressure, reaction time, and catalysts) necessary for the COD removal process. The predicted model had R2 and R2adj correlation coefficients of 0.98 and 0.97, respectively. Pressure only and the interaction effect between temperature and pressure were found to have a significant effect on COD removal (both confidence interval [CI] 95%). Finally, response surface methodology (RSM)-optimized results suggested that 92% of COD could be removed in 1 L of experimental wastewater with a lignin concentration 350 g/L in 120 min under the following conditions: a reaction temperature of 185 °C, a pressure of 10 bars, and catalyst loading of 1 mg/L. The experiment, performed in triplicate, yielded a COD removal of 90±2%. The results are believed to be of importance to pulp and paper industrial wastewater treatment and other similar applications. IMPLICATIONS: Catalytic wet-air oxidation (CWAO) has been used as an alternative to overcome problems related to the high temperatures and pressures required by the traditional wet-air oxidation. CWAO has been widely applied to treat various industrial wastewaters. To reduce the overall operational cost, it is necessary to identify the optimal condition required when designing wastewater treatment plant processes. In this work, the authors had successfully demonstrated the application of response surface methodology (RSM) with the Box-Behnken design (BBD) as a means of elucidating the complicated interaction effects between parameters.


Subject(s)
Air/analysis , Aluminum Oxide/chemistry , Biological Oxygen Demand Analysis , Copper/chemistry , Lignin/chemistry , Wastewater/chemistry , Catalysis , Oxidation-Reduction , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry
7.
J Environ Sci (China) ; 32: 207-16, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26040747

ABSTRACT

Mercury, generally found in natural gas, is extremely hazardous. Although average mercury levels are relatively low, they are further reduced to comply with future mercury regulations, which are stringent in order to avoid releasing to the environment. Herein, vapor mercury adsorption was therefore investigated using two kinds of supports, granular activated carbon (GAC) and titanium dioxide (TiO2). Both supports were impregnated by silver (5 and 15 wt.%), before testing against a commercial adsorbent (sulfur-impregnated activated carbon, SAC). The adsorption isotherm, kinetics, and its thermodynamics of mercury adsorption were reported. The results revealed that Langmuir isotherm provided a better fit to the experimental data. Pseudo second-order was applicable to describe adsorption kinetics. The higher uniform Ag dispersion was a key factor for the higher mercury uptake. TiO2 supported silver adsorbent showed higher mercury adsorption than the commercial one by approximately 2 times. Chemisorption of mercury onto silver active sites was confirmed by an amalgam formation found in the spent adsorbents.


Subject(s)
Charcoal/chemistry , Mercury/isolation & purification , Natural Gas/analysis , Silver/chemistry , Titanium/chemistry , Adsorption , Microscopy, Electron, Scanning , Surface Properties , Thermodynamics , Volatilization , X-Ray Diffraction
8.
Chemosphere ; 92(3): 258-64, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23562548

ABSTRACT

Incineration is considered as an efficient approach in dealing with the increasing demand for municipal and industrial solid waste treatment, especially in areas without sufficient land resources. Facing the concern of health risk, the toxic pollutants emitted from incinerators have attracted much attention from environmentalists, even though this technology is capable of reducing solid waste volume and demand for landfill areas, together with plenty of energy generation. To reduce the negative impacts of toxic chemicals emitted from incinerators, various monitoring and control plans are made not only for use in facilities performance evaluation but also better control of operation for stable effluent quality. How to screen out the key variables from massive observed and control variables for modeling the dioxin emission has become an important issue in incinerator operation and pollution prevention. For these reasons, this study used 4-year monitoring data of an incinerator in Taiwan as a case study, and developed a prediction model based on an artificial neural network (ANN) to forecast the dioxin emission. By doing this, a simplified monitoring strategy for incinerators with regarding to dioxin emission control can be achieved. The result indicated that the prediction model based on a back-propagation neural network is a promising method to deal with complex and non-linear data with the help of statistics in screening out the useful variables for modeling. The suitable architecture of an ANN for using in the dioxin prediction consists of 5 input factors, 3 basic layers with 8 hidden nodes. The R(2) was found to equal 0.99 in both the training and testing steps. In addition, sensitivity analysis can identify the most significant variables for the dioxin emission. From the obtained results, the frequency of activated carbon injection showed as the factor of highest relative importance for the dioxin emission.


Subject(s)
Cities , Dioxins/analysis , Dioxins/chemistry , Models, Statistical , Neural Networks, Computer , Refuse Disposal , Reproducibility of Results
9.
J Hazard Mater ; 205-206: 40-6, 2012 Feb 29.
Article in English | MEDLINE | ID: mdl-22245511

ABSTRACT

This study describes the removal of arsenic species in groundwater by nano zero-valent iron process, including As(III) and As(V). Since the background species may inhibit or promote arsenic removal. The influence of several common ions such as phosphate (PO4(3-)), bicarbonate (HCO3-)), sulfate (SO4(2-)), calcium (Ca2+), chloride (Cl-), and humic acid (HA) were selected to evaluate their effects on arsenic removal. In particular, a 2(6-2) fractional factorial design (FFD) was employed to identify major or interacting factors, which affect arsenic removal in a significant way. As a result of FFD evaluation, PO4(3-) and HA play the role of inhibiting arsenic removal, while Ca2+ was observed to play the promoting one. As for HCO3- and Cl-, the former one inhibits As(III) removal, whereas the later one enhances its removal; on the other hand, As(V) removal was affected only slightly in the presence of HCO3- or Cl-. Hence, it was suggested that the arsenic removal by the nanoiron process can be improved through pretreatment of PO4(3-) and HA. In addition, for the groundwater with high hardness, the nanoiron process can be an advantageous option because of enhancing characteristics of Ca2+.


Subject(s)
Arsenic/chemistry , Iron/chemistry , Nanostructures/chemistry , Water Pollutants, Chemical/chemistry , Bicarbonates/chemistry , Calcium/chemistry , Chlorides/chemistry , Groundwater , Humic Substances , Phosphates/chemistry , Sulfates/chemistry , Water Purification/methods
10.
J Environ Sci (China) ; 24(6): 1125-32, 2012.
Article in English | MEDLINE | ID: mdl-23505881

ABSTRACT

Photocatalytic degradation of paraquat using mesoporous-assembled Cu-TiO2/SBA15 under UV and visible light was investigated. The catalyst was synthesized by impregnation of Cu-TiO2 colloids onto SBA-15. The colloids of Cu-TiO2 were prepared via sol-gel method while the mesoporous support was prepared using hydrothermal technique. The catalyst was characterized using X-ray diffraction, nitrogen adsorption-desorption, transmission electron microscopy, UV diffuse reflectance spectroscopy, Zeta potential and X-ray adsorption spectroscopy. Results from characterizations showed that Cu doped TiO2 had a small crystalline size and was well-dispersed on SBA-15. The inclusion of SBA-15 significantly enhanced the photocatalytic activity of the catalyst. Among the three types of undoped catalyst in this study (P25, TiO2, TiO2/SBA-15), TiO2/SBA-15 yielded the highest degradation of paraquat for all pH under UV illumination. Meanwhile 2 wt.% Cu-TiO2/SBA-15 yielded the highest activity under visible light.


Subject(s)
Copper/chemistry , Herbicides/chemistry , Paraquat/chemistry , Silicon Dioxide/chemistry , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Copper/radiation effects , Herbicides/radiation effects , Hydrogen-Ion Concentration , Light , Nanoparticles/chemistry , Nanoparticles/radiation effects , Paraquat/radiation effects , Photolysis , Silicon Dioxide/radiation effects , Titanium/radiation effects , Ultraviolet Rays , Water Pollutants, Chemical/radiation effects , Water Purification/methods
11.
J Hazard Mater ; 186(2-3): 2123-8, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21256674

ABSTRACT

In this study, batch experiments were performed to investigate a novel process for high concentration arsenate removal in the presence of air and/or CO(2) bubbling. The pretreatment step, CO(2) bubbling at 300 mL/min for 5 min, was taken to adjust the solution pH to an acidic environment, followed by air bubbling at 300 mL/min for 10 min to increase dissolved oxygen in the solution. In the treatment period, the nano-scale zero-valent iron was applied to remove aqueous arsenate of 3000 µg/L, while the treatment system was continuously bubbled by 300 mL/min of air. Such a process resulted in outstanding performance in arsenate removal. Furthermore, in the field groundwater application, the arsenate removal rate for the proposed process was 5 times faster than the rate measured when the system was pretreated by acidic chemical species only.


Subject(s)
Arsenates/isolation & purification , Iron/chemistry , Water Pollutants, Chemical/isolation & purification , Algorithms , Carbon Dioxide/chemistry , Deuterium Oxide/chemistry , Gases , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Transmission , Solutions , Water Supply/analysis
12.
Environ Sci Pollut Res Int ; 18(6): 857-64, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21249458

ABSTRACT

INTRODUCTION: The nano-scale zero-valent iron (NZVI) was used for the removal of arsenite (As(III)) and arsenate (As(V)) in aqueous solution. Batch experiments were conducted to investigate the effects of initial pH, initial arsenic concentration, dissolved oxygen (DO), and ratio of As(III)/As(V) on arsenic removal. MATERIALS AND METHODS: The NZVI synthesized by using NaBH4 and FeCl3 was put into use right after its synthesis. The arsenic treatment system of recirculation mode consists of a reactor with a liquid volume of 4.4 L, which provides dual function of reactants reaction and particles settling in one unit. RESULTS AND DISCUSSION: Consequently, the pseudo-first order rate equations can be used to describe the removal kinetics for As(V) at pH 4 and 7, while the pseudo-second order reaction was observed for As(V) at pH 9 and As(III) at all pH's studied. Arsenic removal rates of both As(V) and As(III) were lower in the system with lower DO. The rate of As(III) removal decreased with the increase of its initial concentration. In contrast, the removal rate of As(V) still remained significantly high as its initial concentration increased. CONCLUSIONS: This study reveals that low pH and high DO will favor arsenic removal. With the mixture of As(III) and As(V), the total arsenic was removed faster than solution containing As(III) or As(V) alone. In addition, the mixture with higher fraction of As(V) resulted in higher arsenic removal.


Subject(s)
Arsenates/isolation & purification , Arsenites/isolation & purification , Iron/chemistry , Metal Nanoparticles/chemistry , Water Pollutants, Chemical/isolation & purification , Arsenic/isolation & purification , Hydrogen-Ion Concentration , Kinetics , Oxygen/chemistry , Water Pollution, Chemical/analysis , Water Purification/methods
13.
Environ Geochem Health ; 32(4): 261-6, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20401518

ABSTRACT

Rice husk (RH) agro-waste was used as a raw material for synthesizing mesoporous molecular sieves, MCM-41. The Fe-MCM-41 was prepared by the hydrothermal technique (HT), resulting in a higher surface area and crystallinity than when prepared under ambient conditions. In addition, a hexagonal structure was clearly seen with hydrothermal technique (HT) preparation. The adsorption of arsenate by HT-Fe-MCM-41 was investigated. The factors studied affecting arsenate adsorption capacity were ferric content in MCM-41, contact time, pH of solution, and initial arsenate concentration. It was found that HT-Fe-MCM-41 at the Si/Fe mole ratio of 10 gave the highest adsorption capacity. Arsenate adsorption reached equilibrium within 4 h. The adsorption capacity of HT-Fe-MCM-41 (Si/Fe = 10) was affected by the initial pH value and the initial arsenate concentration. The adsorption capacity was highest at pH 3 and decreased thereafter with increases in the pH of solution value. The Langmuir model fit the arsenate adsorption isotherm well. The maximum adsorption capacity for arsenate was 1,111 microg g(-1).


Subject(s)
Arsenates/chemistry , Iron/chemistry , Silicon Dioxide/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Arsenates/analysis , Hydrogen-Ion Concentration , Models, Chemical , Oryza/chemistry , Silicon Dioxide/chemical synthesis , Silicon Dioxide/isolation & purification , Water Pollutants, Chemical/analysis
14.
Sci Technol Adv Mater ; 10(1): 015006, 2009 Feb.
Article in English | MEDLINE | ID: mdl-27877269

ABSTRACT

Mesoporous material RH-MCM-41 was synthesized with rice husk silica by a hydrothermal method. It was used as a support for bimetallic platinum-iron catalysts Pt-Fe/RH-MCM-41 for phenol hydroxylation. The catalysts were prepared by co-impregnation with Pt and Fe at amounts of 0.5 and 5.0 wt.%, respectively. The RH-MCM-41 structure in the catalysts was studied with x-ray diffraction, and their surface areas were determined by nitrogen adsorption. The oxidation number of Fe supported on RH-MCM-41 was + 3, as determined by x-ray absorption near edge structure (XANES) analysis. Transmission electron microscopy (TEM) images of all the catalysts displayed well-ordered structures, and metal nanoparticles were observed in some catalysts. All the catalysts were active for phenol hydroxylation using H2O2 as the oxidant at phenol : H2O2 mole ratios of 2 : 1, 2 : 2, 2 : 3 and 2 : 4. The first three ratios produced only catechol and hydroquinone, whereas the 2 : 4 ratio also produced benzoquinone. The 2 : 3 ratio gave the highest phenol conversion of 47% at 70 °C. The catalyst prepared by co-impregnation with Pt and Fe was more active than that prepared using a physical mixture of Pt/RH-MCM-41 and Fe/RH-MCM-41.

SELECTION OF CITATIONS
SEARCH DETAIL
...