Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Pathophysiology ; 30(4): 522-547, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37987308

ABSTRACT

The objective of this study was to determine how housing temperature and genetic diversity affect the onset and severity of allogeneic T cell-induced tissue damage in mice subjected to reduced intensity conditioning (RIC). We found that adoptive transfer of allogeneic CD4+ T cells from inbred donors into sub-lethally irradiated inbred recipients (I→I) housed at standard housing temperatures (ST; 22-24 °C) induced extensive BM and spleen damage in the absence of injury to any other tissue. Although engraftment of T cells in RIC-treated mice housed at their thermo-neutral temperature (TNT; 30-32 °C) also developed similar BM and spleen damage, their survival was markedly and significantly increased when compared to their ST counterparts. In contrast, the adoptive transfer of allogeneic T cells into RIC-treated outbred CD1 recipients failed to induce disease in any tissue at ST or TNT. The lack of tissue damage was not due to defects in donor T cell trafficking to BM or spleen but was associated with the presence of large numbers of B cells and myeloid cells within these tissues that are known to contain immunosuppressive regulatory B cells and myeloid-derived suppressor cells. These data demonstrate, for the first time, that housing temperature affects the survival of RIC-treated I→I mice and that RIC-conditioned outbred mice are resistant to allogeneic T cell-induced BM and spleen damage.

2.
Life (Basel) ; 12(9)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36143354

ABSTRACT

The SARS-CoV-2 pandemic provides a natural opportunity for the collision of coronavirus disease-2019 (COVID-19) with chronic infections, which place numerous individuals at high risk of severe COVID-19. Infection with Human Immunodeficiency Virus (HIV), a global epidemic, remains a major public health concern. Whether prior HIV+ status exacerbates COVID-19 warrants investigation. Herein, we characterized the impact of SARS-CoV-2 in human bronchial epithelial cells (HBECs) previously exposed to HIV. We optimized the air-liquid interface (ALI) cell culture technique to allow for challenges with HIV at the basolateral cell surface and SARS-CoV-2 spike protein on the apical surface, followed by genetic analyses for cellular stress/toxicity and innate/adaptive immune responses. Our results suggest that the IL-10 pathway was consistently activated in HBECs treated with spike, HIV, or a combination. Recombinant spike protein elicited COVID-19 cytokine storms while HIV activated different signaling pathways. HIV-treated HBECs could no longer activate NF-kB, pro-inflammatory TRAF-6 ubiquitination nor RIP1 signaling. Combinations of HIV and SARS-CoV-2 spike increased gene expression for activation of endoplasmic reticulum-phagosome pathway and downregulated non-canonical NF-kB pathways that are key in functional regulatory T cells and RNA Polymerase II transcription. Our in vitro studies suggest that prior HIV infection may not exacerbate COVID-19. Further in vivo studies are warranted to advance this field.

3.
Front Immunol ; 13: 936164, 2022.
Article in English | MEDLINE | ID: mdl-35990658

ABSTRACT

People living with HIV and who receive antiretroviral therapy have a significantly improved lifespan, compared to the early days without therapy. Unfortunately, persisting viral replication in the lungs sustains chronic inflammation, which may cause pulmonary vascular dysfunction and ultimate life-threatening Pulmonary Hypertension (PH). The mechanisms involved in the progression of HIV and PH remain unclear. The study of HIV-PH is limited due to the lack of tractable animal models that recapitulate infection and pathobiological aspects of PH. On one hand, mice with humanized immune systems (hu-mice) are highly relevant to HIV research but their suitability for HIV-PH research deserves investigation. On another hand, the Hypoxia-Sugen is a well-established model for experimental PH that combines hypoxia with the VEGF antagonist SU5416. To test the suitability of hu-mice, we combined HIV with either SU5416 or hypoxia. Using right heart catheterization, we found that combining HIV+SU5416 exacerbated PH. HIV infection increases human pro-inflammatory cytokines in the lungs, compared to uninfected mice. Histopathological examinations showed pulmonary vascular inflammation with arterial muscularization in HIV-PH. We also found an increase in endothelial-monocyte activating polypeptide II (EMAP II) when combining HIV+SU5416. Therefore, combinations of HIV with SU5416 or hypoxia recapitulate PH in hu-mice, creating well-suited models for infectious mechanistic pulmonary vascular research in small animals.


Subject(s)
HIV Infections , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , HIV Infections/complications , Humans , Hypertension, Pulmonary/etiology , Hypoxia/pathology , Immune System/pathology , Inflammation/complications , Mice
4.
Oncotarget ; 12(22): 2234-2251, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34733415

ABSTRACT

DVL proteins are central mediators of the Wnt pathway and relay complex input signals into different branches of the Wnt signaling network. However, molecular mechanism(s) that regulate DVL-mediated relay of Wnt signals still remains unclear. Here, for the first time, we elucidate the functional significance of three DVL-1 lysines (K/Lys) which are subject to post-translational acetylation. We demonstrate that K34 Lys residue in the DIX domain regulates subcellular localization of ß-catenin, thereby influencing downstream Wnt target gene expression. Additionally, we show that K69 (DIX domain) and K285 (PDZ domain) regulate binding of DVL-1 to Wnt target gene promoters and modulate expression of Wnt target genes including CMYC, OCT4, NANOG, and CCND1, in cell line models and xenograft tumors. Finally, we report that conserved DVL-1 lysines modulate various oncogenic functions such as cell migration, proliferation, cell-cycle progression, 3D-spheroid formation and in-vivo tumor growth in breast cancer models. Collectively, these findings highlight the importance of DVL-1 domain-specific lysines which were recently shown to be acetylated and characterize their influence on Wnt signaling. These site-specific modifications may be subject to regulation by therapeutics already in clinical use (lysine deacetylase inhibitors such as Panobinostat and Vorinostat) or may possibly have prognostic utility in translational efforts that seek to modulate dysfunctional Wnt signaling.

5.
PLoS One ; 16(8): e0254845, 2021.
Article in English | MEDLINE | ID: mdl-34358240

ABSTRACT

BACKGROUND: Hematopoietic stem cell transplantation is a potential cure for certain life-threatening malignant and nonmalignant diseases. However, experimental and clinical studies have demonstrated that pre-transplant myeloablative conditioning damages the gut leading to translocation of intestinal bacteria and the development of acute graft vs. host disease (aGVHD). The overall objective of this study was to determine whether administration of broad spectrum antibiotics (Abx) affects the onset and/or severity of aGVHD in lymphopenic mice that were not subjected to toxic, pre-transplant conditioning. RESULTS: We found that treatment of NK cell-depleted recombination activating gene-1-deficient (-NK/RAG) recipients with an Abx cocktail containing vancomycin and neomycin for 7 days prior to and 4 weeks following adoptive transfer of allogeneic CD4+ T cells, exacerbated the development of aGVHD-induced BM failure and spleen damage when compared to untreated-NK/RAG recipients engrafted with syngeneic or allogeneic T cells. Abx-treated mice exhibited severe anemia and monocytopenia as well as marked reductions in BM- and spleen-residing immune cells. Blinded histopathological analysis confirmed that Abx-treated mice engrafted with allogeneic T cells suffered significantly more damage to the BM and spleen than did untreated mice engrafted with allogeneic T cells. Abx-induced exacerbation of BM and spleen damage correlated with a dramatic reduction in fecal bacterial diversity, marked loss of anaerobic bacteria and remarkable expansion of potentially pathogenic bacteria. CONCLUSIONS: We conclude that continuous Abx treatment may aggravate aGVHD-induced tissue damage by reducing short chain fatty acid-producing anaerobes (e.g. Clostridium, Blautia) and/or by promoting the expansion of pathobionts (e.g. Akkermansia) and opportunistic pathogens (Cronobacter).


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bone Marrow/pathology , Disease Progression , Graft vs Host Disease/drug therapy , Lymphopenia/drug therapy , Spleen/pathology , Acute Disease , Adoptive Transfer , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/classification , Bacteria/drug effects , Bacteria/growth & development , Blood Cell Count , Bone Marrow/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/microbiology , Cytokines/blood , Feces/microbiology , Graft vs Host Disease/blood , Graft vs Host Disease/complications , Graft vs Host Disease/pathology , Inflammation/blood , Inflammation/complications , Inflammation/pathology , Lymphopenia/blood , Lymphopenia/complications , Male , Mice , Phylogeny , Spleen/drug effects , Transplantation, Homologous
6.
Front Cell Dev Biol ; 8: 589016, 2020.
Article in English | MEDLINE | ID: mdl-33330467

ABSTRACT

Sirtuins belong to the class III family of NAD-dependent histone deacetylases (HDAC) and are involved in diverse physiological processes that range from regulation of metabolism and endocrine function to coordination of immunity and cellular responses to stress. Sirtuin-1 (SIRT1) is the most well-studied family member and has been shown to be critically involved in epigenetics, immunology, and endocrinology. The versatile roles of SIRT1 include regulation of energy sensing metabolic homeostasis, deacetylation of histone and non-histone proteins in numerous tissues, neuro-endocrine regulation via stimulation of hypothalamus-pituitary axes, synthesis and maintenance of reproductive hormones via steroidogenesis, maintenance of innate and adaptive immune system via regulation of T- and B-cell maturation, chronic inflammation and autoimmune diseases. Moreover, SIRT1 is an appealing target in various disease contexts due to the promise of pharmacological and/or natural modulators of SIRT1 activity within the context of endocrine and immune-related disease models. In this review we aim to provide a broad overview on the role of SIRT1 particularly within the context of endocrinology and immunology.

7.
BMC Immunol ; 21(1): 50, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32878597

ABSTRACT

BACKGROUND: The use of inbred mice housed under standardized environmental conditions has been critical in identifying immuno-pathological mechanisms in different infectious and inflammatory diseases as well as revealing new therapeutic targets for clinical trials. Unfortunately, only a small percentage of preclinical intervention studies using well-defined mouse models of disease have progressed to clinically-effective treatments in patients. The reasons for this lack of bench-to-bedside transition are not completely understood; however, emerging data suggest that genetic diversity and housing environment may greatly influence muring immunity and inflammation. RESULTS: Accumulating evidence suggests that certain immune responses and/or disease phenotypes observed in inbred mice may be quite different than those observed in their outbred counterparts. These differences have been thought to contribute to differing immune responses to foreign and/or auto-antigens in mice vs. humans. There is also a growing literature demonstrating that mice housed under specific pathogen free conditions possess an immature immune system that remarkably affects their ability to respond to pathogens and/or inflammation when compared with mice exposed to a more diverse spectrum of microorganisms. Furthermore, recent studies demonstrate that mice develop chronic cold stress when housed at standard animal care facility temperatures (i.e. 22-24 °C). These temperatures have been shown alter immune responses to foreign and auto-antigens when compared with mice housed at their thermo-neutral body temperature of 30-32 °C. CONCLUSIONS: Exposure of genetically diverse mice to a spectrum of environmentally-relevant microorganisms at housing temperatures that approximate their thermo-neutral zone may improve the chances of identifying new and more potent therapeutics to treat infectious and inflammatory diseases.


Subject(s)
Animal Experimentation/standards , Drug Discovery/methods , Housing, Animal/standards , Animals , Disease Models, Animal , Drug Discovery/standards , Genomics , Humans , Immunity , Mice , Reference Standards , Specific Pathogen-Free Organisms , Temperature
8.
Pathophysiology ; 26(3-4): 233-244, 2019.
Article in English | MEDLINE | ID: mdl-31248669

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially life-saving treatment for refractory/relapsing hematological malignancies, blood disorders or autoimmune diseases. However, approximately 40-50% of patients undergoing allogeneic HSCT will develop a multi-organ, inflammatory disorder called acute graft vs. host disease (aGVHD). Experimental and clinical studies suggest that intestinal injury due to toxic, pre-transplant conditioning protocols (e.g. lethal irradiation and/or chemotherapy) may play a major role in the development of aGVHD. However, recent studies from our laboratory suggest that this may not be the case. The objective of this study was to quantify and compare the onset and severity of aGVHD induced by the adoptive transfer of allogeneic T cells into untreated lymphopenic mice. Four million allogeneic or syngeneic CD4+CD62L+CD25- T cells were transferred (i.p.) into NK cell-depleted RAG1-/- mice or RAG2-/-IL2rγ-/-double knock-out (DKO) mice and assessed daily for signs of aGVHD. We found that adoptive transfer of allogeneic but not syngeneic T cells into NK cell-depleted RAG1-/- or DKO mice induced many of the clinical and histological features of aGVHD including weight loss, inflammatory cytokine production and tissue inflammation. In addition, adoptive transfer of allogeneic T cells into each recipient induced severe anemia as well as dramatic reductions in bone marrow and spleen cellularity. Taken together, we conclude that allogeneic CD4+ T cells are both necessary and sufficient to induce aGVHD in lymphopenic recipients in the absence of toxic, pre-transplant conditioning.

9.
J Physiol ; 596(17): 3915-3927, 2018 09.
Article in English | MEDLINE | ID: mdl-29574759

ABSTRACT

It is well known that alterations in splanchnic organ perfusion and/or immune regulation may produce inflammatory tissue injury similar to that observed in several human disorders such as ischaemia and reperfusion injury, food allergies, diabetes, inflammatory bowel disease and graft-versus-host disease. Mouse models have been tremendously important in defining the roles of the circulation, leukocyte trafficking, inflammatory mediator generation, immune regulation and the intestinal microbiota in the pathogenesis of acute and chronic inflammation. However, few of the promising interventions or therapeutics reported in mouse models of inflammatory diseases have been translated to clinically effective treatments in patients. There is growing concern that because of the significant differences that exist between the murine and human immune systems, mouse models may not adequately recapitulate the immuno-pathogenesis of inflammatory diseases. This inconvenient reality has prompted a number of investigators to undertake a series of studies to humanize the murine immune system via adoptive transfer of human lymphoid or progenitor cells into a new generation of immuno-deficient recipients. In this review, we summarize the recent advances that have been made in the development of humanized mice and describe how these mouse models are being used to study the pathophysiology of splanchnic organ inflammation. In addition, we discuss the limitations of the different approaches and present potential solutions for the continued improvement of these important animal models.


Subject(s)
Autoimmune Diseases/physiopathology , Disease Models, Animal , Graft vs Host Disease/physiopathology , Inflammation/physiopathology , Inflammatory Bowel Diseases/physiopathology , Splanchnic Circulation , Animals , Autoimmune Diseases/immunology , Graft vs Host Disease/immunology , Humans , Inflammation/immunology , Inflammatory Bowel Diseases/immunology , Mice
10.
Inflamm Bowel Dis ; 24(2): 361-379, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29361089

ABSTRACT

One of the best characterized mouse models of the inflammatory bowel diseases (IBD; Crohn's disease, ulcerative colitis) is the CD4+CD45RBhigh T cell transfer model of chronic colitis. Following our relocation to Texas Tech University Health Sciences Center (TTUHSC), we observed a dramatic reduction in the incidence of moderate-to-severe colitis from a 16-year historical average of 90% at Louisiana State University Health Sciences Center (LSUHSC) to <30% at TTUHSC. We hypothesized that differences in the commensal microbiota at the 2 institutions may account for the differences in susceptibility to T cell-induced colitis. Using bioinformatic analyses of 16S rRNA amplicon sequence data, we quantified and compared the major microbial populations in feces from healthy and colitic mice housed at the 2 institutions. We found that the bacterial composition differed greatly between mice housed at LSUHSC vs TTUHSC. We identified several genera strongly associated with, and signficantly overrepresented in high responding RAG-/- mice housed at LSUHSC. In addition, we found that colonization of healthy TTUHSC RAG-/- mice with feces obtained from healthy or colitic RAG-/- mice housed at LSUHSC transferred susceptibility to T cell-induced colitis such that the recipients developed chronic colitis with incidence and severity similar to mice generated at LSUHSC. Finally, we found that the treatment of mice with preexisting colitis with antibiotics remarkably attenuated disease. Taken together, our data demonstrate that specific microbial communities determine disease susceptibility and that manipulation of the intestinal microbiota alters the induction and/or perpetuation of chronic colitis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Colitis/immunology , Colitis/microbiology , Colon/pathology , Gastrointestinal Microbiome/drug effects , Adoptive Transfer , Animals , Bacteria/classification , Colon/drug effects , Disease Models, Animal , Feces/microbiology , Gastrointestinal Microbiome/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Ribosomal, 16S/genetics , T-Lymphocytes/immunology
12.
Pathophysiology ; 23(2): 67-80, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26947707

ABSTRACT

The intestinal mucosal surface in all vertebrates is exposed to enormous numbers of microorganisms that include bacteria, archaea, fungi and viruses. Coexistence of the host with the gut microbiota represents an active and mutually beneficial relationship that helps to shape the mucosal and systemic immune systems of both mammals and teleosts (ray-finned fish). Due to the potential for enteric microorganisms to invade intestinal tissue and induce local and/or systemic inflammation, the mucosal immune system has developed a number of protective mechanisms that allow the host to mount an appropriate immune response to invading bacteria, while limiting bystander tissue injury associated with these immune responses. Failure to properly regulate mucosal immunity is thought to be responsible for the development of chronic intestinal inflammation. The objective of this review is to present our current understanding of the role that intestinal bacteria play in vertebrate health and disease. While our primary focus will be humans and mice, we also present the new and exciting comparative studies being performed in zebrafish to model host-microbe interactions.

13.
Am J Physiol Gastrointest Liver Physiol ; 310(3): G155-62, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26608188

ABSTRACT

The inflammatory diseases ulcerative colitis and Crohn's disease constitute the two main forms of inflammatory bowel disease (IBD). They are characterized by chronic, relapsing inflammation of the gastrointestinal tract, significantly impacting on patient quality of life and often requiring prolonged treatment. Existing therapies for IBD are not effective for all patients, and an unmet need exists for additional therapies to induce and maintain remission. Here we describe the mechanism of action of the Janus kinase (JAK) inhibitor, tofacitinib, for the treatment of IBD and the effect of JAK inhibition on the chronic cycle of inflammation that is characteristic of the disease. The pathogenesis of IBD involves a dysfunctional response from the innate and adaptive immune system, resulting in overexpression of multiple inflammatory cytokines, many of which signal through JAKs. Thus JAK inhibition allows multiple cytokine signaling pathways to be targeted and is expected to modulate the innate and adaptive immune response in IBD, thereby interrupting the cycle of inflammation. Tofacitinib is an oral, small molecule JAK inhibitor that is being investigated as a targeted immunomodulator for IBD. Clinical development of tofacitinib and other JAK inhibitors is ongoing, with the aspiration of providing new treatment options for IBD that have the potential to deliver prolonged efficacy and clinically meaningful patient benefits.


Subject(s)
Cytokines/metabolism , Inflammatory Bowel Diseases/drug therapy , Janus Kinases/antagonists & inhibitors , Piperidines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Adaptive Immunity , Animals , Humans , Immunity, Innate , Inflammatory Bowel Diseases/metabolism , Signal Transduction/drug effects
14.
Inflamm Bowel Dis ; 21(7): 1652-73, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26035036

ABSTRACT

Animal models of disease have been used extensively by the research community for the past several decades to better understand the pathogenesis of different diseases and assess the efficacy and toxicity of different therapeutic agents. Retrospective analyses of numerous preclinical intervention studies using mouse models of acute and chronic inflammatory diseases reveal a generalized failure to translate promising interventions or therapeutics into clinically effective treatments in patients. Although several possible reasons have been suggested to account for this generalized failure to translate therapeutic efficacy from the laboratory bench to the patient's bedside, it is becoming increasingly apparent that the mouse immune system is substantially different from the human. Indeed, it is well known that >80 major differences exist between mouse and human immunology; all of which contribute to significant differences in immune system development, activation, and responses to challenges in innate and adaptive immunity. This inconvenient reality has prompted investigators to attempt to humanize the mouse immune system to address important human-specific questions that are impossible to study in patients. The successful long-term engraftment of human hematolymphoid cells in mice would provide investigators with a relatively inexpensive small animal model to study clinically relevant mechanisms and facilitate the evaluation of human-specific therapies in vivo. The discovery that targeted mutation of the IL-2 receptor common gamma chain in lymphopenic mice allows for the long-term engraftment of functional human immune cells has advanced greatly our ability to humanize the mouse immune system. The objective of this review is to present a brief overview of the recent advances that have been made in the development and use of humanized mice with special emphasis on autoimmune and chronic inflammatory diseases. In addition, we discuss the use of these unique mouse models to define the human-specific immunopathological mechanisms responsible for the induction and perpetuation of chronic gut inflammation.


Subject(s)
Adaptive Immunity/immunology , Autoimmune Diseases/immunology , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/immunology , Animals , Disease Models, Animal , Humans , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/pathology , Mice
15.
Front Immunol ; 6: 165, 2015.
Article in English | MEDLINE | ID: mdl-26085826

ABSTRACT

Experimental models of colitis in mice have been used extensively for analyzing the molecular events that occur during inflammatory bowel disease (IBD) development. However, it is uncertain to what extent the experimental models reproduce features of human IBD. This is largely due to the lack of precise methods for direct and comprehensive comparison of mouse and human inflamed colon tissue at the molecular level. Here, we use global gene expression patterns of two sets of pediatric IBD and two mouse models of colitis to obtain a direct comparison of the genome signatures of mouse and human IBD. By comparing the two sets of pediatric IBD microarray data, we found 83 genes were differentially expressed in a similar manner between pediatric Crohn's disease and ulcerative colitis. Up-regulation of the chemokine (C-C motif) ligand 2 (CCL2) gene that maps to 17q12, a confirmed IBD susceptibility loci, indicates that our comparison study can reveal known genetic associations with IBD. In comparing pediatric IBD and experimental colitis microarray data, we found common signatures amongst them including: (1) up-regulation of CXCL9 and S100A8; (2) cytokine-cytokine receptor pathway dysregulation; and (3) over-represented IRF1 and IRF2 transcription binding sites in the promoter region of up-regulated genes, and HNF1A and Lhx3 binding sites were over-represented in the promoter region of the down-regulated genes. In summary, this study provides a comprehensive view of transcriptome changes between different pediatric IBD populations in comparison with different colitis models. These findings reveal several new molecular targets for further study in the regulation of colitis.

16.
Pathophysiology ; 21(4): 267-88, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24935242

ABSTRACT

Inflammatory bowel diseases (IBD) are chronic, relapsing conditions of multifactorial etiology. The two primary diseases of IBD are Crohn's disease (CD) and ulcerative colitis (UC). Both entities are hypothesized to occur in genetically susceptible individuals due to microbial alterations and environmental contributions. The exact etiopathogenesis, however, is not known for either disease. A variety of mouse models of CD and UC have been developed to investigate the pathogenesis of these diseases and evaluate treatment modalities. Broadly speaking, the mouse models can be divided into 4 categories: genetically engineered, immune manipulated, spontaneous and erosive/chemically induced. No one mouse model completely recapitulates the immunopathology of CD or UC, however each model possesses particular similarities to human IBD and offers advantageous for specific details of IBD pathogenesis. Here we discuss the more commonly used models in each category and critically evaluate how the immunopathology induced compares to CD or UC, as well as the advantages and disadvantages associated with each model.

17.
Brain Pathol ; 24(5): 436-51, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24417588

ABSTRACT

Multiple sclerosis (MS) has been proposed to be an immune-mediated disease in the central nervous system (CNS) that can be triggered by virus infections. In Theiler's murine encephalomyelitis virus (TMEV) infection, during the first week (acute stage), mice develop polioencephalomyelitis. After 3 weeks (chronic stage), mice develop immune-mediated demyelination with virus persistence, which has been used as a viral model for MS. Regulatory T cells (Tregs) can suppress inflammation, and have been suggested to be protective in immune-mediated diseases, including MS. However, in virus-induced inflammatory demyelination, although Tregs can suppress inflammation, preventing immune-mediated pathology, Tregs may also suppress antiviral immune responses, leading to more active viral replication and/or persistence. To determine the role and potential translational usage of Tregs in MS, we treated TMEV-infected mice with ex vivo generated induced Tregs (iTregs) on day 0 (early) or during the chronic stage (therapeutic). Early treatment worsened clinical signs during acute disease. The exacerbation of acute disease was associated with increased virus titers and decreased immune cell recruitment in the CNS. Therapeutic iTreg treatment reduced inflammatory demyelination during chronic disease. Immunologically, iTreg treatment increased interleukin-10 production from B cells, CD4(+) T cells and dendritic cells, which may contribute to the decreased CNS inflammation.


Subject(s)
Multiple Sclerosis/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Brain/immunology , Brain/pathology , Cardiovirus Infections/immunology , Encephalitis/immunology , Female , Mice , Mice, Inbred C57BL , Multiple Sclerosis/virology , Poliomyelitis/immunology , Spinal Cord/immunology , Spinal Cord/pathology , Theilovirus/immunology
18.
Free Radic Biol Med ; 68: 122-33, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24275541

ABSTRACT

The mammalian intestine encounters many more microorganisms than any other tissue in the body thus making it the largest and most complex component of the immune system. Indeed, there are greater than 100 trillion (10(14)) microbes within the healthy human intestine, and the total number of genes derived from this diverse microbiome exceeds that of the entire human genome by at least 100-fold. Our coexistence with the gut microbiota represents a dynamic and mutually beneficial relationship that is thought to be a major determinant of health and disease. Because of the potential for intestinal microorganisms to induce local and/or systemic inflammation, the intestinal immune system has developed a number of immune mechanisms to protect the host from pathogenic infections while limiting the inflammatory tissue injury that accompanies these immune responses. Failure to properly regulate intestinal mucosal immunity is thought to be responsible for the inflammatory tissue injury observed in the inflammatory bowel diseases (IBD; Crohn disease, ulcerative colitis). An accumulating body of experimental and clinical evidence strongly suggests that IBD results from a dysregulated immune response to components of the normal gut flora in genetically susceptible individuals. The objective of this review is to present our current understanding of the role that enteric microbiota play in intestinal homeostasis and pathogenesis of chronic intestinal inflammation.


Subject(s)
Gastrointestinal Tract/microbiology , Inflammation/microbiology , Intestinal Mucosa/microbiology , Microbiota , Animals , Gastrointestinal Tract/pathology , Homeostasis , Humans , Inflammation/pathology , Inflammatory Bowel Diseases , Intestinal Mucosa/pathology
19.
Inflamm Bowel Dis ; 19(10): 2091-7, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23899539

ABSTRACT

BACKGROUND: Ocular disease is known widely to occur in a subset of patients experiencing inflammatory bowel diseases. Although this extraintestinal manifestation has been recognized for a number of years, the pathogenetic mechanisms responsible for this distant organ inflammatory response are unknown. METHODS: In the current study, we used a T-cell transfer model of chronic colitis in mice in which we quantified colonic inflammation, ocular function (electroretinography), ocular blood flow (intravital microscopy of the retina), intraocular pressure, and retinal hypoxia. RESULTS: Ocular function in colitic mice was significantly impaired, with decreases in retinal b-wave amplitudes and oscillatory potentials. Moreover, retinal a waves and oscillatory potentials were delayed. Retinal blood flow was significantly reduced in the colitic mice, and this decrease in perfusion coupled with significant decreases in hematocrit would decrease oxygen delivery to the eye. Accordingly, mice with severe colitis showed increased levels of immunostaining for the hypoxia-dependent probe pimonidazole. Finally, intraocular pressures were found to be reduced in the colitic mice. CONCLUSIONS: Ocular disease occurs in a mouse model of chronic colitis, with retinal dysfunction seeming to be related to insufficient perfusion and oxygen delivery.


Subject(s)
Colitis/complications , Disease Models, Animal , Eye Diseases/etiology , Gastrointestinal Tract/pathology , Homeodomain Proteins/physiology , Inflammation/complications , Interleukin-10/physiology , Animals , Chronic Disease , Colitis/metabolism , Colitis/pathology , Electroretinography , Eye Diseases/metabolism , Eye Diseases/pathology , Gastrointestinal Tract/metabolism , Hypoxia , Inflammation/metabolism , Inflammation/pathology , Intraocular Pressure , Mice , Mice, Inbred C57BL , Retina/metabolism , Retina/pathology , T-Lymphocytes/immunology , T-Lymphocytes/pathology
20.
Inflamm Bowel Dis ; 19(11): 2282-94, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23893082

ABSTRACT

The objectives of this study were to (a) evaluate and compare the ability of ex vivo-generated induced regulatory T cells (iTregs) and freshly isolated natural Tregs (nTregs) to reverse/attenuate preexisting intestinal inflammation in a mouse model of chronic colitis and (b) quantify the Treg-targeted gene expression profiles of these two Treg populations. We found that ex vivo-generated iTregs were significantly more potent than nTregs at attenuating preexisting colitis. This superior therapeutic activity was associated with increased accumulation of iTregs within the mesenteric lymph nodes and large and significant reductions in interleukin (IL)-6 and IL-17A expression in the colons of iTreg- versus nTreg-treated mice. The enhanced immunosuppressive activity of iTregs was not because of increased expression or stability of Foxp3 as iTregs and nTregs obtained from the mesenteric lymph nodes, and colons of reconstituted mice expressed similar levels of this important transcription factor. In addition, we observed a total of 27 genes that were either upregulated or downregulated in iTregs when compared with nTregs. Although iTregs were found to be superior at reversing established disease, their message levels of IL-10 and IL-35 and surface expression of the gut-homing molecules CCR9 and α4ß7 were significantly reduced when compared with nTregs. Taken together, our data demonstrate that ex vivo-generated iTregs are significantly more potent than nTregs at attenuating preexisting gut inflammation despite reduced expression of classical regulatory cytokines and gut-homing molecules. Our data suggest that the immunosuppressive activity of iTregs may be because of their ability to directly or indirectly decrease expression of IL-6 and IL-17A within the inflamed bowel.


Subject(s)
Colitis/therapy , Disease Models, Animal , Forkhead Transcription Factors/physiology , Gastrointestinal Tract/immunology , Homeodomain Proteins/physiology , Inflammation/therapy , T-Lymphocytes, Regulatory/immunology , Animals , Cell Differentiation , Chronic Disease , Colitis/immunology , Colitis/pathology , Cytokines/metabolism , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...