Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37048905

ABSTRACT

Special techniques for deep purification of ZnO and WO3 have been developed in this work. A ZnWO4 single crystal has been grown by the Czochralski method using purified ZnO and WO3 chemicals, along with the ZnWO4 crystal-etalon, which has been grown at the same conditions using commercially available 5N ZnO and WO3 chemicals. The actual accidental impurities compositions of both the initial chemicals and the grown crystals have been measured by inductively coupled plasma mass-spectrometry. A complex of comparative spectroscopic studies of the crystals has been performed, including optical absorption spectra, photo-, X-ray-, and cathodoluminescence spectra and decay kinetics, as well as the photoluminescence excitation spectra. The revealed differences in the measured properties of the crystals have been analyzed in terms of influence of the accidental impurities on these properties.

2.
Materials (Basel) ; 14(13)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34279328

ABSTRACT

A laboratory technology for a new ultra-low background hybrid material (HM) which meets the requirements for neutron absorption with simultaneous neutron detection has been developed. The technology and hybrid material can be useful for future low background underground detectors designed to directly search for dark matter with liquid noble gases. The HM is based on a polymethylmethacrylate (PMMA) polymer matrix in which gadolinium nuclei are homogeneously distributed up to 1.5 wt% concentration in polymer slabs of 5 cm thickness. To determine the 65 impurity elements by the inductively coupled plasma mass-spectrometry (ICP-MS) technique in the Gd-based preparations in 100-0.01 ppb range, the corresponding method has been developed. Limits of determination (LD) of 0.011 ppb for uranium, and 0.016 ppb for thorium were achieved. An analysis of Gd raw materials showed that the lowest contents of U and Th (1.2-0.2 ppb) were detected in commercial Gd-based preparations. They were manufactured either from secondary raw materials (extraction phosphoric acid) or from mineral raw materials formed in sedimentary rocks (phosphogypsum). To produce the Gd-doped HM the commercial GdCl3 was purified and used for synthesis of low-background coordination compound, namely, acetylacetonate gadolinium (Gd(acac)3) with U/Th contents less than LD. When dissolving Gd(acac)3 in methylmethacrylate, the true solution was obtained and its further thermal polymerization allowed fabrication of the Gd-doped PMMA with ultra-low background.

SELECTION OF CITATIONS
SEARCH DETAIL
...