Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34960518

ABSTRACT

Pyroelectrics are a wide class of materials that change their polarization when the system temperature varies. This effect is utilized for a number of different commercial and industrial applications ranging from simple thermal sensors and laser interferometers to water vapor harvesting. Electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for studying the structure and dynamics of materials with unpaired electrons. Since heating accompanies a resonant change of the orientation of electron spins in an external magnetic field, pyroelectrics can be utilized as versatile detectors for so-called indirect detection of the EPR signal. In this work, we investigated three different types of PVDF (polyvinylidene difluoride) standard pyroelectric films with indium tin oxide, Cu/Ni, and Au coatings to determine their sensitivity for detecting EPR signals. All the films were shown to be able to detect the EPR spectra of about 1 µg of a standard stable free radical by heat release. A comparative study based on the calculation of the noise-equivalent power and specific detectivity from experimental spectra showed that the Au coated PVDF film is the most promising active element for measuring the EPR signal. Using the best achieved sensitivity, estimation is given whether this is sufficient for using a PVDF-based pyrodetector for indirectly detecting EPR spectra by recombination heat release or not.


Subject(s)
Hot Temperature , Polyvinyls , Electron Spin Resonance Spectroscopy , Electrons , Fluorocarbon Polymers
2.
J Magn Reson ; 311: 106685, 2020 02.
Article in English | MEDLINE | ID: mdl-31981782

ABSTRACT

We propose an approach for improving the homogeneity of microwave magnetic field amplitude in a dielectric tube resonator for electron paramagnetic resonance spectroscopy at X-band. The improvement is achieved by "shaping" (controllable variation of the outer diameter of a dielectric insert along its axial direction). Various shaping scenarios based on the principle of discrete solenoids and electromagnetic calculations have been considered. The dielectric insert having the most promising shape was manufactured from a bismuth germanate single crystal. The shaped insert increases the area at B1 > 0.9 B1max from 5.06 to 7.36 mm. Higher sensitivity and lower likelihood of quantitative errors have been achieved in pulse EPR experiments for "long" samples (whose length was comparable to that of the dielectric insert) in a shaped dielectric insert.

3.
Phys Chem Chem Phys ; 20(18): 12396-12405, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29623979

ABSTRACT

An experimental method is described allowing fast field-cycling Nuclear Magnetic Resonance (NMR) experiments over a wide range of magnetic fields from 5 nT to 10 T. The method makes use of a hybrid technique: the high field range is covered by positioning the sample in the inhomogeneous stray field of the NMR spectrometer magnet. For fields below 2 mT a magnetic shield is mounted on top of the spectrometer; inside the shield the magnetic field is controlled by a specially designed coil system. This combination allows us to measure T1-relaxation times and nuclear Overhauser effect parameters over the full range in a routine way. For coupled proton-carbon spin systems relaxation with a common T1 is found at low fields, where the spins are "strongly coupled". In some cases, experiments at ultralow fields provide access to heteronuclear long-lived spin states. Efficient coherent polarization transfer is seen for proton-carbon spin systems at ultralow fields as follows from the observation of quantum oscillations in the polarization evolution. Applications to analysis and the manipulation of heteronuclear spin systems are discussed.

4.
J Magn Reson ; 263: 79-91, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26773525

ABSTRACT

A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100µT up to 7T) within less than 0.3s; progress in NMR probe design provides NMR linewidths of about 10(-3)ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined.

5.
Phys Chem Chem Phys ; 11(31): 6826-32, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19639157

ABSTRACT

DNA fragments were synthesized consisting of 12 nucleotides and containing non-nucleotide inserts of different length in the middle. Two nitroxide spin labels 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl were attached at the two ends of the molecules. Single-stranded DNAs and double-stranded DNAs (DNA duplexes) in frozen at 77 K glassy water/glycerol solutions were studied using pulsed electron-electron double resonance (PELDOR). The distance distributions between two spin labels in molecules were obtained from PELDOR data using Tikhonov regularization algorithm, and were found to be close to the Gaussian functions. Experimental PELDOR data were fitted by adjusting precisely the maximum position and the width of these functions. The obtained results show that duplexes possess a substantially narrower distribution, as compared to the single-stranded DNAs. Introduction of a non-nucleotide insert 2-hydroxymethyl-3-hydroxy-tetrahydrofuran leads to a slight but nevertheless detectable decrease of the mean distance between two spin labels. This decrease may be attributed to bending of the molecule around the insert site, by an angle of approximately 20 degrees . An introduction of a non-nucleotide insert bis-(di-ethyleneglycol)-phosphate results in a remarkable broadening of the distance distribution. The results evidence that PELDOR of spin-labeled DNA molecules may be used as a "molecular ruler" for studying the influence of local damages on the DNA conformations.


Subject(s)
DNA, Single-Stranded/chemistry , DNA/chemistry , Electron Spin Resonance Spectroscopy/methods , Nucleic Acid Conformation , Spin Labels , Ethylene Glycols/chemistry , Furans/chemistry , Models, Molecular , Oligodeoxyribonucleotides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...