Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacogenet Genomics ; 32(9): 301-307, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36256705

ABSTRACT

OBJECTIVE: The study of ABCB1 and CYP3A4/3A5 gene polymorphism genes is promising in terms of their influence on prothrombin time variability, the residual equilibrium concentration of direct oral anticoagulants (DOACs) in patients with atrial fibrillation and the development of new personalized approaches to anticoagulation therapy in these patients. The aim of the study is to evaluate the effect of ABCB1 (rs1045642) C>T; ABCB1 (rs4148738) C>T and CYP3A5 (rs776746) A>G, CYP3A4*22(rs35599367) C>T gene polymorphisms on prothrombin time level and residual equilibrium concentration of rivaroxaban in patients with atrial fibrillation. METHODS: In total 86 patients (42 men and 44 female), aged 67.24 ± 1.01 years with atrial fibrillation were enrolled in the study. HPLC mass spectrometry analysis was used to determine rivaroxaban residual equilibrium concentration. Prothrombin time data were obtained from patient records. RESULTS: The residual equilibrium concentration of rivaroxaban in patients with ABCB1 rs4148738 CT genotype is significantly higher than in patients with ABCB1 rs4148738 CC (P = 0.039). The analysis of the combination of genotypes did not find a statistically significant role of combinations of alleles of several polymorphic markers in increasing the risk of hemorrhagic complications when taking rivaroxaban. CONCLUSION: Patients with ABCB1 rs4148738 CT genotype have a statistically significantly higher residual equilibrium concentration of rivaroxaban in blood than patients with ABCB1 rs4148738 CC genotype, which should be considered when assessing the risk of hemorrhagic complications and risk of drug-drug interactions. Further studies of the effect of rivaroxaban pharmacogenetics on the safety profile and efficacy of therapy are needed.


Subject(s)
Atrial Fibrillation , Cytochrome P-450 CYP3A , Female , Humans , Male , ATP Binding Cassette Transporter, Subfamily B/genetics , Atrial Fibrillation/drug therapy , Atrial Fibrillation/genetics , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Genotype , Polymorphism, Genetic , Prothrombin Time , Rivaroxaban/adverse effects , Aged
2.
Pharmacogenomics ; 21(7): 449-457, 2020 05.
Article in English | MEDLINE | ID: mdl-32336193

ABSTRACT

Phenazepam® is prescribed to relieve anxiety and sleep disorders during alcohol withdrawal, although it is associated with undesirable side effects. Aim: To demonstrate changes in the safety and efficacy profiles of Phenazepam in patients with anxiety disorders and comorbid alcohol use disorder. Materials & methods: A total of 94 Russian patients with alcohol use disorder received 4.0 mg of Phenazepam per day in tablets. We used a urinary 6-beta-hydroxycortisol/cortisol ratio to evaluate CYP3A activity. Results: A statistically significant inverse correlation between Phenazepam plasma concentration and CYP3A activity was found (r = -0.340 and p = 0.017). Correlation between the concentration/dose ratio and phenotyping results was also statistically significant (r = 0.301 and p = 0.026). Conclusion: The safety and efficacy of Phenazepam depend on CYP3A genetic polymorphisms.


Subject(s)
Alcoholism/drug therapy , Alcoholism/enzymology , Anxiety Disorders/drug therapy , Anxiety Disorders/enzymology , Benzodiazepines/therapeutic use , Cytochrome P-450 CYP3A/metabolism , Adult , Alcoholism/epidemiology , Alcoholism/genetics , Anxiety Disorders/epidemiology , Anxiety Disorders/genetics , Benzodiazepines/pharmacology , Comorbidity , Cytochrome P-450 CYP3A/genetics , Enzyme Activation/physiology , Female , GABA Agents/pharmacology , GABA Agents/therapeutic use , Humans , Male , Russia/epidemiology
3.
Pharmgenomics Pers Med ; 11: 113-119, 2018.
Article in English | MEDLINE | ID: mdl-29988737

ABSTRACT

BACKGROUND: Fluvoxamine therapy is used for treatment of patients with depressive disorder, but it is often ineffective, and some patients suffer from dose-dependent undesirable side effects such as vertigo, headache, indigestion, xerostomia, increased anxiety, etc. CYP2D6 is involved in the biotransformation of fluvoxamine. Meanwhile, the genes encoding these isoenzymes have a high level of polymorphism, which may affect the protein synthesis. OBJECTIVE: The primary objective of our study was to investigate the effects of CYP2D6 genetic polymorphisms on the efficacy and safety of fluvoxamine in patients with depressive disorder and comorbid alcohol use disorder, in order to develop the algorithms of optimization of fluvoxamine therapy for reducing the risk of dose-dependent undesirable side effects and pharmacoresistance. METHODS: The study involved 45 male patients (average age: 36.44±9.96 years) with depressive disorder and comorbid alcohol use disorder. A series of psychometric scales was used in the research. Genotyping of CYP2D6 (1846G>A) was performed using real-time polymerase chain reaction. RESULTS: According to results of Mann-Whitney U-test, statistically significant differences between the efficacy and safety of fluvoxamine were obtained on 9th and 16th days of therapy in patients with GG and GA genotypes (The Hamilton Rating Scale for Depression: 10.0 [10.0; 23.0] vs 25.0 [24.0; 16.0] (P<0.001) on the 9th day and 4.0 [2.0; 5.0] vs 6.0 [6.0; 7.0] on the 16th day; The UKU Side Effect Rating Scale: 6.0 [4.0; 6.0] vs 9.0 [9.0; 10.0] (P<0.001) on the 9th day and 5.0 [1.0; 9.0] vs 19.0 [18.0; 22.0] on the 16th day). CONCLUSION: This study demonstrated the lower efficacy and safety of fluvoxamine in patients with depressive disorder and comorbid alcohol use disorders with GA genotype in CYP2D6 1846G>A polymorphic marker.

4.
Pharmgenomics Pers Med ; 11: 43-49, 2018.
Article in English | MEDLINE | ID: mdl-29606886

ABSTRACT

INTRODUCTION: Difficulties in non-vitamin K anticoagulant (NOAC) administration in acute stroke can be associated with changes in pharmacokinetic parameters of NOAC such as biotransformation, distribution, and excretion. Therefore, obtaining data on pharmacokinetics of NOAC and factors that affect it may help develop algorithms for personalized use of this drug class in patients with acute cardioembolic stroke. PATIENTS AND METHODS: Pharmacokinetics of apixaban in patients with acute stroke was studied earlier by Kryukov et al. The present study enrolled 17 patients with cardioembolic stroke, who received 5 mg of apixaban. In order to evaluate the pharmacokinetic parameters of apixaban, venous blood samples were collected before taking 5 mg of apixaban (point 0) and 1, 2, 3, 4, 10, and 12 hours after drug intake. Blood samples were centrifuged at 3000 rpm for 15 minutes. Separate plasma was aliquoted in Eppendorf tubes and frozen at -70°C until analysis. High-performance liquid chromatography mass spectrometry analysis was used to determine apixaban plasma concentration. Genotyping was performed by real-time polymerase chain reaction. CYP3A isoenzyme group activity was evaluated by determining urinary concentration of endogenous substrate of the enzyme and its metabolite (6-ß-hydroxycortisol to cortisol ratio). Statistical analysis was performed using SPSS Statistics version 20.0. The protocol of this study was reviewed and approved by the ethics committee; patients or their representatives signed an informed consent. RESULTS: ABCB1 (rs1045642 and rs4148738) gene polymorphisms do not affect the pharmacokinetics of apixaban as well as CYP3A5 (rs776746) gene polymorphisms. Apixaban pharmacokinetics in groups with different genotypes did not differ statistically significantly. Correlation analysis showed no statistically significant relationship between pharmacokinetic parameters of apixaban and the metabolic activity of CYP3A. CONCLUSION: Questions such as depending on genotyping results for apixaban dosing and implementation of express genotyping in clinical practice remain open for NOACs. Large population studies are required to clarify the clinical significance of genotyping for this drug class.

5.
Pharmgenomics Pers Med ; 11: 1-5, 2018.
Article in English | MEDLINE | ID: mdl-29343979

ABSTRACT

BACKGROUND: Isoenzymes CYP2D6 and CYP3A4, the activity of which varies widely, are involved in metabolism of haloperidol and may influence its profile of efficacy and safety. OBJECTIVE: The primary aim of this study was to estimate the relationship between CYP3A5 gene polymorphism, activity of the CYP3A isoenzyme, and the risk of development of adverse drug reactions by haloperidol in patients with alcohol abuse. METHODS: Sixty-six male alcohol-addicted patients participated in the study. The safety of haloperidol was evaluated by Udvalg for Kliniske Undersogelser Side Effect Rating Scale (UKU) and Simpson-Angus Scale for extrapyramidal symptoms (SAS). The activity of CYP3A was evaluated by determining the concentrations of an endogenous substrate of this isoenzyme (cortisol) and its urinary metabolite (6-beta-hydroxycortisol, 6-B-HC). Genotyping of CYP3A5*3 was performed by real-time polymerase chain reaction with allele-specific hybridization. RESULTS: The frequency of A-allele occurrence in Russian population was very poor (2.27%). CYP3A5*3 polymorphism had no influence on safety profile indicators of haloperidol (UKU scale: p=0.55, SAS scale: p=0.64). In addition, there was no statistical significant difference between the values of indexes of the metabolic ratio (6-B-HC/cortisol) in groups with different genotypes of CYP3A5*3: GG 5.00 (3.36; 6.39) vs AG 5.26 (2.10; 6.78) (p=0.902). CONCLUSION: The frequency of A-allele occurrence of CYP3A5*3 in Russian population is very poor, and it has no high influence on the safety of haloperidol treatment; therefore, there are no reasons to take this polymorphism into account in patients with alcohol addiction who receive haloperidol.

6.
Pharmgenomics Pers Med ; 10: 209-215, 2017.
Article in English | MEDLINE | ID: mdl-28744152

ABSTRACT

BACKGROUND: Antipsychotic action of haloperidol is due to blockade of D2 receptors in the mesolimbic dopamine pathway, while the adverse drug reactions are associated with striatal D2 receptor blockade. Contradictory data concerning the effects of genetic polymorphisms of genes encoding these receptors and associated structures (catechol-O-methyltransferase [COMT], glycine transporter and gene encoding the density of D2 receptors on the neuronal membrane) are described. OBJECTIVE: The objectives of this study were to evaluate the correlation between DRD2, SLC6A3 (DAT) and COMT genetic polymorphisms and to investigate their effect on the development of adverse drug reactions in patients with alcohol-use disorder who received haloperidol. PATIENTS AND METHODS: The study included 64 male patients (average age 41.38 ± 10.14 years, median age 40 years, lower quintile [LQ] 35 years, upper quintile [UQ] 49 years). Bio-Rad CFX Manager™ software and "SNP-Screen" sets of "Syntol" (Russia) were used to determine polymorphisms rs4680, rs1800497, rs1124493, rs2242592, rs2298826 and rs2863170. In every "SNP-Screen" set, two allele-specific hybridizations were used, which allowed to determine two alleles of studied polymorphism separately on two fluorescence channels. RESULTS: Results of this study detected a statistically significant difference in the adverse drug reaction intensity in patients receiving haloperidol with genotypes 9/10 and 10/10 of polymorphic marker SLC6A3 rs28363170. In patients receiving haloperidol in tablets, the increases in the UKU Side-Effect Rating Scale (UKU) score of 9.96 ± 2.24 (10/10) versus 13 ± 2.37 (9/10; p < 0.001) and in the Simpson-Angus Scale (SAS) score of 5.04 ± 1.59 (10/10) versus 6.41 ± 1.33 (9/10; p = 0.006) were revealed. CONCLUSION: Polymorphism of the SCL6A3 gene can affect the safety of haloperidol, and this should be taken into account during the choice of drug and its dosage regimen.

7.
Pharmgenomics Pers Med ; 9: 89-95, 2016.
Article in English | MEDLINE | ID: mdl-27695358

ABSTRACT

BACKGROUND: Today, it is proved that isoenzymes CYP2D6 and CYP3A4 are involved in metabolism of haloperidol. In our previous investigation, we found a medium correlation between the efficacy and safety of haloperidol and the activity of CYP3A4 in patients with alcohol abuse. OBJECTIVE: The aim of this study was to evaluate the correlation between the activity of CYP2D6 and the efficacy and safety of haloperidol in patients with diagnosed alcohol abuse. METHODS: The study involved 70 men (average age: 40.83±9.92 years) with alcohol addiction. A series of psychometric scales were used in the research. The activity of CYP2D6 was evaluated by high-performance liquid chromatography with mass spectrometry using the ratio of 6-hydroxy-1,2,3,4-tetrahydro-beta-carboline to pinoline. Genotyping of CYP2D6 (1846G>A) was performed using real-time polymerase chain reaction. RESULTS: According to results of correlation analysis, statistically significant values of Spearman correlation coefficient (rs) between the activity of CYP2D6 and the difference of points in psychometric scale were obtained in patients receiving haloperidol in injection form (Sheehan Clinical Anxiety Rating Scale =-0.721 [P<0.001] and Udvald for Kliniske Undersogelser Side Effect Rating Scale =0.692 [P<0.001]) and in those receiving haloperidol in tablet form (Covi Anxiety Scale =-0.851 [P<0.001] and Udvald for Kliniske Undersogelser Side Effect Rating Scale =0.797 [P<0.001]). CONCLUSION: This study demonstrated the correlations between the activity of CYP2D6 isozyme and the efficacy and safety of haloperidol in patients with alcohol addiction.

SELECTION OF CITATIONS
SEARCH DETAIL
...