Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 73(8): 1574-1584, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28345196

ABSTRACT

BACKGROUND: The cotton whitefly Bemisia tabaci (Gennadius) is among the most important pests of numerous crops and a vector of more than 100 plant viruses, causing significant crop losses worldwide. Managing this pest as well as inhibiting the transmission of major viruses such as tomato yellow leaf curl virus (TYLCV) are of utmost importance for sustainable yields. The efficacy against both whitefly and virus transmission of the novel systemic butenolide insecticide flupyradifurone was investigated in this study. RESULTS: The inhibition of TYLCV transmission by flupyradifurone was compared to that by thiamethoxam, a neonicotinoid insecticide reported to inhibit virus transmission. The experiment was performed under high virus pressure conditions (10 viruliferous insects per plant for 48 h) using a fully characterized field strain of B. tabaci. The insecticides were foliarly applied at recommended label rates under greenhouse conditions. Flupyradifurone suppressed virus transmission by 85% while levels of suppression after thiamethoxam treatments were just 25% and significantly lower. In untreated control plots, 100% of plants were infected by TYLCV. The observed difference in the potential to suppress virus transmission is linked to a strong knockdown effect as well as prolonged feeding inhibition in flupyradifurone treatments. CONCLUSION: Flupyradifurone is shown to be an extremely useful, fast-acting, new chemical tool in integrated crop management offering simultaneous control of whiteflies and strong suppression of viral infections via its rapid knockdown action and good residual activity. © 2017 Society of Chemical Industry.


Subject(s)
4-Butyrolactone/analogs & derivatives , Begomovirus/drug effects , Begomovirus/physiology , Hemiptera/virology , Pyridines/pharmacology , Solanum lycopersicum/virology , 4-Butyrolactone/pharmacology , Animals , Biological Assay , Environment, Controlled , Feeding Behavior/drug effects , Hemiptera/physiology
2.
Pest Manag Sci ; 66(2): 220-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19894225

ABSTRACT

BACKGROUND: In Tetranychus urticae Koch, acetylcholinesterase insensitivity is often involved in organophosphate (OP) and carbamate (CARB) resistance. By combining toxicological, biochemical and molecular data from three reference laboratory and three OP selected strains (OP strains), the AChE1 mutations associated with resistance in T. urticae were characterised. RESULTS: The resistance ratios of the OP strains varied from 9 to 43 for pirimiphos-methyl, from 78 to 586 for chlorpyrifos, from 8 to 333 for methomyl and from 137 to 4164 for dimethoate. The insecticide concentration needed to inhibit 50% of the AChE1 activity was, in the OP strains, at least 2.7, 55, 58 and 31 times higher for the OP pirimiphos-methyl, chlorpyrifos oxon, paraoxon and omethoate respectively, and 87 times higher for the CARB carbaryl. By comparing the AChE1 sequence, four amino acid substitutions were detected in the OP strains: (1) F331W (Torpedo numbering) in all the three OP strains; (2) T280A found in the three OP strains but not in all clones; (3) G328A, found in two OP strains; (4) A201S found in only one OP strain. CONCLUSIONS: Four AChE1 mutations were found in resistant strains of T. urticae, and three of them, F331W, G328A and A201S, are possibly involved in resistance to OP and CARB insecticides. Among them, F331W is probably the most important and the most common in T. urticae. It can be easily detected by the diagnostic PCR-RLFP assay developed in this study.


Subject(s)
Acaricides/pharmacology , Acetylcholinesterase/genetics , Drug Resistance , Organophosphates/pharmacology , Point Mutation , Tetranychidae/drug effects , Tetranychidae/enzymology , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Amino Acid Sequence , Animals , Europe , Molecular Sequence Data , Sequence Alignment , Tetranychidae/genetics
3.
Pest Manag Sci ; 65(3): 313-22, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19115232

ABSTRACT

BACKGROUND: A major problem of crop protection in Crete, Greece, is the control of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) with chemical insecticides owing to the rapid development of resistance. The aim of this study was to investigate the establishment of resistance and the underlying mechanisms to major insecticide classes with classical bioassays and known biochemical resistance markers. RESULTS: During a 2005-2007 survey, 53 Q biotype populations were collected. Application history records showed extensive use of neonicotinoids, organophosphates, carbamates and pyrethroids. High resistance levels were identified in the majority of populations (>80%) for imidacloprid (RF: 38-1958x) and alpha-cypermethrin (RF: 30-600x). Low resistance levels (RF < 12) were observed for pirimiphos-methyl. A strong correlation between resistance to imidacloprid and the number of applications with neonicotinoids was observed. Significant correlations were observed between COE and P450-dependent monoxygenase activity with resistance to alpha-cypermethrin and imidacloprid respectively. A propoxur-based AChE diagnostic test indicated that iAChE was widespread in most populations. Resistance levels for alpha-cypermethrin were increased when compared with a previous survey (2002-2003). Differentiation of LC(50) values between localities was observed for imidacloprid only. CONCLUSION: Bemisia tabaci resistance evolved differently in each of the three insecticides studied. Imidacloprid resistance seems less established and less persistent than alpha-cypermethrin resistance. The low resistance levels for pirimiphos-methyl suggest absence of cross-resistance with other organophosphates or carbamates used.


Subject(s)
Hemiptera/drug effects , Insecticide Resistance , Insecticides/pharmacology , Animals , Greece , Hemiptera/classification , Hemiptera/enzymology , Imidazoles/pharmacology , Insect Proteins/metabolism , Neonicotinoids , Nitro Compounds/pharmacology , Oxygenases/metabolism , Pyrethrins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...