Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 80(21): 10813-28, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16928763

ABSTRACT

Recent outbreaks of avian influenza in humans have stressed the need for an improved nonhuman primate model of influenza pathogenesis. In order to further develop a macaque model, we expanded our previous in vivo genomics experiments with influenza virus-infected macaques by focusing on the innate immune response at day 2 postinoculation and on gene expression in affected lung tissue with viral genetic material present. Finally, we sought to identify signature genes for early infection in whole blood. For these purposes, we infected six pigtailed macaques (Macaca nemestrina) with reconstructed influenza A/Texas/36/91 virus and three control animals with a sham inoculate. We sacrificed one control and two experimental animals at days 2, 4, and 7 postinfection. Lung tissue was harvested for pathology, gene expression profiling, and proteomics. Blood was collected for genomics every other day from each animal until the experimental endpoint. Gross and microscopic pathology, immunohistochemistry, viral gene expression by arrays, and/or quantitative real-time reverse transcription-PCR confirmed successful yet mild infections in all experimental animals. Genomic experiments were performed using macaque-specific oligonucleotide arrays, and high-throughput proteomics revealed the host response to infection at the mRNA and protein levels. Our data showed dramatic differences in gene expression within regions in influenza virus-induced lesions based on the presence or absence of viral mRNA. We also identified genes tightly coregulated in peripheral white blood cells and in lung tissue at day 2 postinoculation. This latter finding opens the possibility of using gene expression arrays on whole blood to detect infection after exposure but prior to onset of symptoms or shedding.


Subject(s)
Influenza, Human/genetics , Influenza, Human/virology , Macaca nemestrina/genetics , Macaca nemestrina/virology , Animals , Disease Models, Animal , Gene Expression , Gene Expression Profiling , Genes, Viral , Genomics , Humans , Immunity, Innate , Influenza A virus/genetics , Influenza A virus/immunology , Influenza A virus/pathogenicity , Influenza, Human/immunology , Influenza, Human/pathology , Lung/metabolism , Lung/pathology , Lung/virology , Macaca nemestrina/immunology , Male , Models, Biological , Proteomics , Time Factors
2.
Phytopathology ; 92(3): 265-72, 2002 Mar.
Article in English | MEDLINE | ID: mdl-18943997

ABSTRACT

ABSTRACT A polymerase chain reaction (PCR) assay using a set of specific primers and a dual-labeled probe (TaqMan) was developed to quantify the amount of Aphanomyces euteiches DNA in alfalfa plants exhibiting varying levels of disease severity. The study included isolates of race 1 and race 2 of A. euteiches. The assay also discriminated between alfalfa populations for resistance based on analysis of DNA extracted from bulked plant samples. Analysis of individual plants and bulked plant samples of standard check populations with both pathogen isolates resulted in Spearman rank correlations between pathogen DNA content and disease severity index ratings that were greater than 0.75 and highly significant (P < 0.0005). In experiments with a race 1 isolate, the amount of pathogen DNA present in the resistant check WAPH-1 was significantly less than in the susceptible check Saranac. In experiments with a race 2 isolate, the amount of pathogen DNA in the resistant check WAPH-5 was significantly less than in either of the susceptible checks, Saranac and WAPH-1. Discrimination between commercial cultivars based on quantitative PCR analysis of bulked plant samples was similar to classification based on visual assessment of disease severity.

3.
Plant Dis ; 86(9): 928-932, 2002 Sep.
Article in English | MEDLINE | ID: mdl-30818550

ABSTRACT

A rapid technique for identification and detection of Phoma sclerotioides, the causal agent of brown root rot of alfalfa, has been developed using polymerase chain reaction (PCR). Amplification products obtained from random amplified polymorphic DNA (RAPD) reactions were cloned and sequenced, and two extended primer sets were designed from the resulting data that were used to detect sequence-characterized DNA markers. A single 499-bp DNA amplification product was consistently obtained from primers PSB12499 that was specific for 19 isolates of P.sclerotioides but was not produced from Phoma medicaginis or Phoma betae, or from other soilborne pathogens including Aphanomyces euteiches, Rhizoctonia solani, Fusarium oxysporum, Pythium ultimum, or Phytophthora infestans. A 499-bp amplification product was also produced from root tissue known to be infected with the fungus as verified by microscopic examination. A similar PCR product was obtained from soil samples collected from fields with an established infection of P. sclerotioides on alfalfa. This PCR-based assay enables detection of P. sclerotioides from alfalfa root tissue and in soil samples in a single day, including extraction of DNA, compared with standard methods that require up to 100 days for identification using agar media.

4.
Phytopathology ; 90(10): 1137-44, 2000 Oct.
Article in English | MEDLINE | ID: mdl-18944478

ABSTRACT

ABSTRACT Polymerase chain reaction (PCR) products were identified and amplified from isolates of Aphanomyces euteiches and A. cochlioides. The products were cloned and sequenced, and the data were used to design pairs of extended PCR primers to amplify sequence-characterized DNA markers. The primer pair OPC7-FS-30 and OPC7-RS-25 amplified a single 1,332-bp product from all isolates of A. euteiches that were not amplified from any other isolates tested. A single 718-bp product was selectively amplified only from isolates of A. cochlioides with the primer pair OPB10-FS-25 and OPB10-RS-25. A. euteiches was detected in roots of several varieties of field-grown peas collected from a root rot trial site. PCR also detected A. euteiches in the organic fraction of field soil samples. Both pairs of extended primers were used in a multiplex reaction to unambiguously discriminate between A. euteiches and A. cochlioides. Both pairs of primers were used in two-step PCR reactions in which annealing and extension was done in a single step at 72 degrees C. This reduced the time required for amplification of the diagnostic PCR product and its resolution by electrophoresis to less than 3 h.

SELECTION OF CITATIONS
SEARCH DETAIL
...