Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 102(4-1): 042216, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33212613

ABSTRACT

The spectral form factor is a dynamical probe for level statistics of quantum systems. The early-time behavior is commonly interpreted as a characterization of two-point correlations at large separation. We argue that this interpretation can be too restrictive by indicating that the self-correlation imposes a constraint on the spectral form factor integrated over time. More generally, we indicate that each expansion coefficient of the two-point correlation function imposes a constraint on the properly weighted time-integrated spectral form factor. We discuss how these constraints can affect the interpretation of the spectral form factor as a probe for ergodicity. We propose a probe, which eliminates the effect of the constraint imposed by the self-correlation. The use of this probe is demonstrated for a model of randomly incomplete spectra and a Floquet model supporting many-body localization.

2.
Phys Rev Lett ; 122(18): 180601, 2019 May 10.
Article in English | MEDLINE | ID: mdl-31144897

ABSTRACT

We numerically study the level statistics of the Gaussian ß ensemble. These statistics generalize Wigner-Dyson level statistics from the discrete set of Dyson indices ß=1, 2, 4 to the continuous range 0<ß<∞. The Gaussian ß ensemble covers Poissonian level statistics for ß→0, and provides a smooth interpolation between Poissonian and Wigner-Dyson level statistics. We establish the physical relevance of the level statistics of the Gaussian ß ensemble by showing near-perfect agreement with the level statistics of a paradigmatic model in studies on many-body localization over the entire crossover range from the thermal to the many-body localized phase. In addition, we show similar agreement for a related Hamiltonian with broken time-reversal symmetry.

3.
Phys Rev Lett ; 118(8): 080601, 2017 Feb 24.
Article in English | MEDLINE | ID: mdl-28282152

ABSTRACT

We study the ergodic-nonergodic transition in a generalized Dicke model with independent corotating and counterrotating light-matter coupling terms. By studying level statistics, the average ratio of consecutive level spacings, and the quantum butterfly effect (out-of-time correlation) as a dynamical probe, we show that the ergodic-nonergodic transition in the Dicke model is a consequence of the proximity to the integrable limit of the model when one of the couplings is set to zero. This can be interpreted as a hint for the existence of a quantum analogue of the classical Kolmogorov-Arnold-Moser theorem. In addition, we show that there is no intrinsic relation between the ergodic-nonergodic transition and the precursors of the normal-superradiant quantum phase transition.

4.
Sci Rep ; 5: 13097, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26287123

ABSTRACT

Light-matter interaction is naturally described by coupled bosonic and fermionic subsystems. This suggests that a certain Bose-Fermi duality is naturally present in the fundamental quantum mechanical description of photons interacting with atoms. We reveal submanifolds in parameter space of a basic light-matter interacting system where this duality is promoted to a supersymmetry (SUSY) which remains unbroken. We show that SUSY is robust with respect to decoherence and dissipation. In particular, the stationary density matrix at the supersymmetric lines in parameter space has a degenerate subspace. The dimension of this subspace is given by the Witten index and thus is topologically protected. As a consequence, the dissipative dynamics is constrained by a robust additional conserved quantity which translates information about an initial state into the stationary state. In addition, we demonstrate that the same SUSY structures are present in condensed matter systems with spin-orbit couplings of Rashba and Dresselhaus types, and therefore spin-orbit coupled systems at the SUSY lines should be robust with respect to various types of disorder. Our findings suggest that optical and condensed matter systems at the SUSY points can be used for quantum information technology and can open an avenue for quantum simulation of SUSY field theories.

5.
Phys Rev Lett ; 108(8): 080404, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22463504

ABSTRACT

We study the influence of geometry of quantum systems underlying space of states on its quantum many-body dynamics. We observe an interplay between dynamical and topological ingredients of quantum nonequilibrium dynamics revealed by the geometrical structure of the quantum space of states. As a primary example we use the anisotropic XY ring in a transverse magnetic field with an additional time-dependent flux. In particular, if the flux insertion is slow, nonadiabatic transitions in the dynamics are dominated by the dynamical phase. In the opposite limit geometric phase strongly affects transition probabilities. This interplay can lead to a nonequilibrium phase transition between these two regimes. We also analyze the effect of geometric phase on defect generation during crossing a quantum-critical point.

6.
Phys Rev Lett ; 104(25): 255302, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20867392

ABSTRACT

We theoretically analyze Ramsey interference experiments in one-dimensional quasicondensates and obtain explicit expressions for the time evolution of full distribution functions of fringe contrast. We show that distribution functions contain unique signatures of the many-body mechanism of decoherence. We argue that Ramsey interference experiments provide a powerful tool for analyzing strongly correlated nature of 1D interacting systems.

7.
Phys Rev Lett ; 104(4): 040402, 2010 Jan 29.
Article in English | MEDLINE | ID: mdl-20366690

ABSTRACT

Using the asymptotic Bethe ansatz, we obtain an exact solution of the many-body problem for 1D spin-polarized fermions with resonant p-wave interactions, taking into account the effects of both scattering volume and effective range. Under typical experimental conditions, accounting for the effective range, the properties of the system are significantly modified due to the existence of "shape" resonances. The excitation spectrum of the considered model has unexpected features, such as the inverted position of the particle- and holelike branches at small momenta, and rotonlike minima. We find that the frequency of the "breathing" mode in the harmonic trap provides an unambiguous signature of the effective range.

8.
Phys Rev Lett ; 102(13): 130603, 2009 Apr 03.
Article in English | MEDLINE | ID: mdl-19392341

ABSTRACT

We study the unitary time evolution of antiferromagnetic order in anisotropic Heisenberg chains that are initially prepared in a pure quantum state far from equilibrium. Our analysis indicates that the antiferromagnetic order imprinted in the initial state vanishes exponentially. Depending on the anisotropy parameter, oscillatory or nonoscillatory relaxation dynamics is observed. Furthermore, the corresponding relaxation time exhibits a minimum at the critical point, in contrast to the usual notion of critical slowing down, from which a maximum is expected.

9.
Phys Rev Lett ; 100(14): 140401, 2008 Apr 11.
Article in English | MEDLINE | ID: mdl-18518006

ABSTRACT

We report on the observation of many-body spin dynamics of interacting, one-dimensional (1D) ultracold bosonic gases with two spin states. By controlling the nonlinear atomic interactions close to a Feshbach resonance we are able to induce a phase diffusive many-body spin dynamics of the relative phase between the two components. We monitor this dynamical evolution by Ramsey interferometry, supplemented by a novel, many-body echo technique, which unveils the role of quantum fluctuations in 1D. We find that the time evolution of the system is well described by a Luttinger liquid initially prepared in a multimode squeezed state. Our approach allows us to probe the nonequilibrium evolution of one-dimensional many-body quantum systems.

10.
Phys Rev Lett ; 99(20): 200404, 2007 Nov 16.
Article in English | MEDLINE | ID: mdl-18233125

ABSTRACT

We study the problem of rapid change of the interaction parameter (quench) in a many-body low-dimensional system. It is shown that, measuring the correlation functions after the quench, the information about a spectrum of collective excitations in a system can be obtained. This observation is supported by analysis of several integrable models and we argue that it is valid for nonintegrable models as well. Our conclusions are supplemented by performing exact numerical simulations on finite systems. We propose that measuring the power spectrum in a dynamically split 1D Bose-Einsten condensate into two coupled condensates can be used as an experimental test of our predictions.

SELECTION OF CITATIONS
SEARCH DETAIL
...