Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 51(6): 1546-59, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18311895

ABSTRACT

Age-related macular degeneration (AMD) is one of the leading causes of loss of vision in the industrialized world. Attenuating the VEGF signal in the eye to treat AMD has been validated clinically. A large body of evidence suggests that inhibitors targeting the VEGFr pathway may be effective for the treatment of AMD. Recent studies using Src/YES knockout mice suggest that along with VEGF, Src and YES play a crucial role in vascular leak and might be useful in treating edema associated with AMD. Therefore, we have developed several potent benzotriazine inhibitors designed to target VEGFr2, Src, and YES. One of the most potent compounds is 4-chloro-3-{5-methyl-3-[4-(2-pyrrolidin-1-yl-ethoxy)phenylamino]benzo[1,2,4]triazin-7-yl}phenol ( 5), a dual inhibitor of both VEGFr2 and the Src family (Src and YES) kinases. Several ester analogues of 5 were prepared as prodrugs to improve the concentration of 5 at the back of the eye after topical administration. The thermal stability of these esters was studied, and it was found that benzoyl and substituted benzoyl esters of 5 showed good thermal stability. The hydrolysis rates of these prodrugs were studied to analyze their ability to undergo conversion to 5 in vivo so that appropriate concentrations of 5 are available in the back-of-the-eye tissues. From these studies, we identified 4-chloro-3-(5-methyl-3-{[4-(2-pyrrolidin-1-ylethoxy)phenyl]amino}-1,2,4-benzotriazin-7-yl)phenyl benzoate ( 12), a topically administered prodrug delivered as an eye drop that is readily converted to the active compound 5 in the eye. This topically delivered compound exhibited excellent ocular pharmacokinetics and poor systemic circulation and showed good efficacy in the laser induced choroidal neovascularization model. On the basis of its superior profile, compound 12 was advanced. It is currently in a clinical trial as a first in class, VEGFr2 targeting, topically applied compound for the treatment of AMD.


Subject(s)
Macular Degeneration/drug therapy , Ophthalmic Solutions/therapeutic use , Phenols/therapeutic use , Prodrugs/therapeutic use , Triazines/therapeutic use , Administration, Topical , Animals , Choroidal Neovascularization/drug therapy , Clinical Trials as Topic , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Design , Eye/drug effects , Eye/radiation effects , Lasers , Mice , Mice, Knockout , Models, Molecular , Molecular Structure , Ophthalmic Solutions/chemistry , Ophthalmic Solutions/pharmacokinetics , Phenols/chemistry , Phenols/pharmacokinetics , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Structure-Activity Relationship , Triazines/chemistry , Triazines/pharmacokinetics , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , src-Family Kinases/antagonists & inhibitors
2.
Bioorg Med Chem Lett ; 17(21): 5812-8, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17827012

ABSTRACT

We describe the design, synthesis and structure-activity relationship studies in optimizing a series of benzotriazine compounds as potent inhibitors of both Abl and Abl-T315I enzymes. The design includes targeting of an acid functional residue on the alphaC-helix that is available only upon kinase activation. This designed interaction provides an advantage in overcoming the challenges arising from the T315I mutation of Abl and transforms poor (ca. 10 microM) inhibitors into those with low nM potency.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Triazines/chemistry , Triazines/pharmacology , Drug Design , Electrophoresis, Polyacrylamide Gel , Models, Molecular , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 17(3): 602-8, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17113292
4.
Bioorg Med Chem Lett ; 16(21): 5546-50, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-16931012

ABSTRACT

We report the discovery and preliminary SAR studies of a series of structurally novel benzotriazine core based small molecules as inhibitors of Src kinase. To the best of our knowledge, benzotriazine template based compounds have not been reported as kinase inhibitors. The 3-(2-(1-pyrrolidinyl)ethoxy)phenyl analogue (43) was identified as one of the most potent inhibitors of Src kinase.


Subject(s)
Proto-Oncogene Proteins pp60(c-src)/antagonists & inhibitors , Triazines/pharmacology , Humans , Structure-Activity Relationship
5.
Antimicrob Agents Chemother ; 49(8): 3302-10, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16048940

ABSTRACT

Cyclic peptides with an even number of alternating d,l-alpha-amino acid residues are known to self-assemble into organic nanotubes. Such peptides previously have been shown to be stable upon protease treatment, membrane active, and bactericidal and to exert antimicrobial activity against Staphylococcus aureus and other gram-positive bacteria. The present report describes the in vitro and in vivo pharmacology of selected members of this cyclic peptide family. The intravenous (i.v.) efficacy of six compounds with MICs of less than 12 microg/ml was tested in peritonitis and neutropenic-mouse thigh infection models. Four of the six peptides were efficacious in vivo, with 50% effective doses in the peritonitis model ranging between 4.0 and 6.7 mg/kg against methicillin-sensitive S. aureus (MSSA). In the thigh infection model, the four peptides reduced the bacterial load 2.1 to 3.0 log units following administration of an 8-mg/kg i.v. dose. Activity against methicillin-resistant S. aureus was similar to MSSA. The murine pharmacokinetic profile of each compound was determined following i.v. bolus injection. Interestingly, those compounds with poor efficacy in vivo displayed a significantly lower maximum concentration of the drug in serum and a higher volume of distribution at steady state than compounds with good therapeutic properties. S. aureus was unable to easily develop spontaneous resistance upon prolonged exposure to the peptides at sublethal concentrations, in agreement with the proposed interaction with multiple components of the bacterial membrane canopy. Although additional structure-activity relationship studies are required to improve the therapeutic window of this class of antimicrobial peptides, our results suggest that these amphipathic cyclic d,l-alpha-peptides have potential for systemic administration and treatment of otherwise antibiotic-resistant infections.


Subject(s)
Anti-Bacterial Agents , Muscular Diseases/drug therapy , Peptides, Cyclic , Peritonitis/drug therapy , Staphylococcal Infections/drug therapy , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Female , Mice , Mice, Inbred ICR , Microbial Sensitivity Tests , Muscular Diseases/microbiology , Neutropenia/chemically induced , Peptide Library , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacokinetics , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Peritonitis/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Thigh/microbiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...