Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Diabetes Obes Metab ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951936

ABSTRACT

AIM: To perform a direct, double-blind, randomised, crossover comparison of subcutaneous and intravenous glucagon-like peptide-1 (GLP-1) in hyperglycaemic subjects with type 2 diabetes naïve to GLP-1-based therapy. MATERIALS AND METHODS: Ten fasted, hyperglycaemic subjects (1 female, age 63 ± 10 years [mean ± SD], glycated haemoglobin 73.5 ± 22.0 mmol/mol [8.9% ± 2.0%], both mean ± SD) received subcutaneous GLP-1 and intravenous saline, or intravenous GLP-1 and subcutaneous saline. Infusion rates were doubled every 120 min (1.2, 2.4, 4.8 and 9.6 pmol·kg-1·min-1 for subcutaneous, and 0.3, 0.6, 1.2 and 2.4 pmol·kg-1·min-1 for intravenous). Plasma glucose, total and intact GLP-1, insulin, C-peptide, glucagon and gastrointestinal symptoms were evaluated over 8 h. The results are presented as mean ± SEM. RESULTS: Plasma glucose decreased more with intravenous (by ~8.0 mmol/L [144 mg/dL]) than subcutaneous GLP-1 (by ~5.6 mmol/L [100 mg/dL]; p < 0.001). Plasma GLP-1 increased dose-dependently, but more with intravenous than subcutaneous for both total (∆max 154.2 ± 3.9 pmol/L vs. 85.1 ± 3.8 pmol/L; p < 0.001), and intact GLP-1 (∆max 44.2 ± 2.2 pmol/L vs. 12.8 ± 2.2 pmol/L; p < 0.001). Total and intact GLP-1 clearance was higher for subcutaneous than intravenous GLP-1 (p < 0.001 and p = 0.002, respectively). The increase in insulin secretion was greater, and glucagon was suppressed more with intravenous GLP-1 (p < 0.05 each). Gastrointestinal symptoms did not differ (p > 0.05 each). CONCLUSIONS: Subcutaneous GLP-1 administration is much less efficient than intravenous GLP-1 in lowering fasting plasma glucose, with less stimulation of insulin and suppression of glucagon, and much less bioavailability, even at fourfold higher infusion rates.

2.
Diabetologia ; 67(7): 1260-1270, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38561463

ABSTRACT

AIMS/HYPOTHESIS: Metformin lowers postprandial glycaemic excursions in individuals with type 2 diabetes by modulating gastrointestinal function, including the stimulation of glucagon-like peptide-1 (GLP-1). The impact of varying the timing of metformin administration on postprandial glucose metabolism is poorly defined. We evaluated the effects of metformin, administered at different intervals before an intraduodenal glucose infusion, on the subsequent glycaemic, insulinaemic and GLP-1 responses in metformin-treated type 2 diabetes. METHODS: Sixteen participants with type 2 diabetes that was relatively well-controlled by metformin monotherapy were studied on four separate days in a crossover design. On each day, participants were randomised to receive a bolus infusion of metformin (1000 mg in 50 ml 0.9% saline) via a nasoduodenal catheter at t = -60, -30 or 0 min (and saline at the other timepoints) or saline at all timepoints (control), followed by an intraduodenal glucose infusion of 12.56 kJ/min (3 kcal/min) at t = 0-60 min. The treatments were blinded to both participants and investigators involved in the study procedures. Plasma glucose, insulin and total GLP-1 levels were measured every 30 min between t = -60 min and t = 120 min. RESULTS: There was a treatment-by-time interaction for metformin in reducing plasma glucose levels and increasing plasma GLP-1 and insulin levels (p<0.05 for each). The reduction in plasma glucose levels was greater when metformin was administered at t = -60 or -30 min vs t = 0 min (p<0.05 for each), and the increases in plasma GLP-1 levels were evident only when metformin was administered at t = -60 or -30 min (p<0.05 for each). Although metformin did not influence insulin sensitivity, it enhanced glucose-induced insulin secretion (p<0.05), and the increases in plasma insulin levels were comparable on the 3 days when metformin was given. CONCLUSIONS/INTERPRETATION: In well-controlled metformin-treated type 2 diabetes, glucose-lowering by metformin is greater when it is given before, rather than with, enteral glucose, and this is associated with a greater GLP-1 response. These observations suggest that administration of metformin before meals may optimise its effect in improving postprandial glycaemic control. TRIAL REGISTRATION: www.anzctr.org.au ACTRN12621000878875 FUNDING: The study was not funded by a specific research grant.


Subject(s)
Blood Glucose , Cross-Over Studies , Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Glucose , Hypoglycemic Agents , Metformin , Humans , Metformin/therapeutic use , Metformin/administration & dosage , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Male , Glucagon-Like Peptide 1/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Female , Middle Aged , Double-Blind Method , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Glucose/metabolism , Insulin/blood , Aged , Adult , Postprandial Period , Duodenum/metabolism , Duodenum/drug effects
3.
J Clin Endocrinol Metab ; 106(2): 364-371, 2021 01 23.
Article in English | MEDLINE | ID: mdl-33230553

ABSTRACT

CONTEXT: Hypoglycemia is a major barrier to optimal glycemic control in insulin-treated diabetes. Recent guidelines from the American Diabetes Association have subcategorized "non-severe" hypoglycemia into level 1 (<3.9 mmol/L) and 2 (<3 mmol/L) hypoglycemia. Gastric emptying of carbohydrate is a major determinant of postprandial glycemia but its role in hypoglycemia counter-regulation remains underappreciated. "Marked" hypoglycemia (~2.6 mmol/L) accelerates gastric emptying and increases carbohydrate absorption in health and type 1 diabetes, but the impact of "mild" hypoglycemia (3.0-3.9 mmol/L) is unknown. OBJECTIVE: To determine the effects of 2 levels of hypoglycemia, 2.6 mmol/L ("marked") and 3.6 mmol/L ("mild"), on gastric emptying in health. DESIGN, SETTING, AND SUBJECTS: Fourteen healthy male participants (mean age: 32.9 ±â€…8.3 years; body mass index: 24.5 ±â€…3.4 kg/m2) from the general community underwent measurement of gastric emptying of a radiolabeled solid meal (100 g beef) by scintigraphy over 120 minutes on 3 separate occasions, while blood glucose was maintained at either ~2.6 mmol/L, ~3.6 mmol/L, or ~6 mmol/L in random order from 15 minutes before until 60 minutes after meal ingestion using glucose-insulin clamp. Blood glucose was then maintained at 6 mmol/L from 60 to 120 minutes on all days. RESULTS: Gastric emptying was accelerated during both mild (P = 0.011) and marked (P = 0.001) hypoglycemia when compared to euglycemia, and was more rapid during marked compared with mild hypoglycemia (P = 0.008). Hypoglycemia-induced gastric emptying acceleration during mild (r = 0.57, P = 0.030) and marked (r = 0.76, P = 0.0014) hypoglycemia was related to gastric emptying during euglycemia. CONCLUSION: In health, acceleration of gastric emptying by insulin-induced hypoglycemia is dependent on the degree of hypoglycemia and baseline rate of emptying.


Subject(s)
Biomarkers/analysis , Gastric Emptying , Hypoglycemia/pathology , Hypoglycemic Agents/adverse effects , Insulin/adverse effects , Adult , Blood Glucose/analysis , Female , Follow-Up Studies , Glycated Hemoglobin/analysis , Humans , Hypoglycemia/chemically induced , Male , Prognosis
5.
Diabetes Care ; 43(8): 1813-1821, 2020 08.
Article in English | MEDLINE | ID: mdl-32471908

ABSTRACT

OBJECTIVE: Tachyphylaxis for slowing of gastric emptying is seen with continuous exposure to glucagon-like peptide 1 (GLP-1). We therefore aimed to establish whether prolonged use of a "short-acting" GLP-1 receptor agonist, lixisenatide, achieves sustained slowing of gastric emptying and reduction in postprandial glycemia. RESEARCH DESIGN AND METHODS: A total of 30 patients with metformin-treated type 2 diabetes underwent assessment of gastric emptying (scintigraphy) and glucose metabolism (dual tracer technique) after a 75-g glucose drink, before and after 8 weeks' treatment with lixisenatide (20 µg subcutaneously daily) or placebo, in a double-blind randomized parallel design. RESULTS: Gastric retention of the glucose drink was markedly increased after lixisenatide versus placebo (ratio of adjusted geometric means for area under the curve [AUC] over 240 min of 2.19 [95% CI 1.82, 2.64], P < 0.001), associated with substantial reductions in the rate of systemic appearance of oral glucose (P < 0.001) and incremental AUC for blood glucose (P < 0.001). Lixisenatide suppressed both glucagon (P = 0.003) and insulin (P = 0.032), but not endogenous glucose production, over 120 min after oral glucose intake. Postprandial glucose lowering over 240 min was strongly related to the magnitude of slowing of gastric emptying by lixisenatide (r = -0.74, P = 0.002) and to the baseline rate of emptying (r = 0.52, P = 0.048) but unrelated to ß-cell function (assessed by ß-cell glucose sensitivity). CONCLUSIONS: Eight weeks' treatment with lixisenatide is associated with sustained slowing of gastric emptying and marked reductions in postprandial glycemia and appearance of ingested glucose. Short-acting GLP-1 receptor agonists therefore potentially represent an effective long-term therapy for specifically targeting postprandial glucose excursions.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/drug therapy , Gastric Emptying/drug effects , Peptides/pharmacology , Postprandial Period/drug effects , Aged , Australia , Blood Glucose/drug effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Double-Blind Method , Drug Administration Schedule , Female , Glucagon/blood , Humans , Hypoglycemic Agents/therapeutic use , Insulin/blood , Male , Middle Aged , Peptides/administration & dosage , Placebos , Time Factors
6.
Diabetes Res Clin Pract ; 156: 107822, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31446113

ABSTRACT

AIMS: To determine the prevalence of low faecal elastase-1 (FE-1) (≤200 µg/g) in type 2 diabetes (T2DM), and to test the hypothesis that pancreatic enzyme replacement therapy (PERT) would reduce postprandial glycaemia after a high-fat, high-carbohydrate meal in T2DM subjects with low FE-1. METHODS: Of 109 community-based patients who submitted stool samples, 10 had low FE-1 and 8 were recruited (6 male, 2 female, 67.8 ±â€¯3.0 years). Participants were given a high-fat, high-carbohydrate meal (718 kcal) with either pancrelipase (50,000 units) or placebo in a randomised, double-blind, crossover fashion. The primary outcome was the difference in postprandial glycaemia following PERT vs placebo, as evaluated by the incremental area under the postprandial plasma glucose curve (iAUC). Secondary outcomes included differences in gastric half-emptying time (T50) measured using scintigraphy, and C-peptide iAUC. RESULTS: The prevalence of low FE-1 in T2DM was 9.2% (95% CI 3.8-14.6%). There was no difference in postprandial glycaemia iAUC (P = 0.38), gastric emptying T50 (P = 0.69) or C-peptide iAUC (P = 0.25) after PERT compared to placebo. CONCLUSIONS: Decreased FE-1 has a relatively low prevalence in community-based patients with T2DM, and PERT does not reduce postprandial glycaemia in these patients. CLINICAL TRIAL REGISTRATION NUMBER: ACTRN12617000349347.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , Pancreatic Elastase/metabolism , Aged , Feces , Female , Humans , Male , Prevalence
7.
Diabetes Obes Metab ; 21(3): 640-647, 2019 03.
Article in English | MEDLINE | ID: mdl-30370686

ABSTRACT

AIMS: The gastrointestinal tract, particularly the lower gut, may be key to the anti-diabetic action of metformin. We evaluated whether administration of metformin into the distal, vs the proximal, small intestine would be more effective in lowering plasma glucose by stimulating glucagon-like pepetide-1 (GLP-1) and/or slowing gastric emptying (GE) in type 2 diabetes (T2DM). MATERIALS AND METHODS: Ten diet-controlled T2DM patients were studied on three occasions. A transnasal catheter was positioned with proximal and distal infusion ports located 13 and 190 cm beyond the pylorus, respectively. Participants received infusions of (a) proximal + distal saline (control), (b) proximal metformin (1000 mg) + distal saline or (c) proximal saline + distal metformin (1000 mg) over 5 minutes, followed 60 minutes later by a glucose drink containing 50 g glucose and 150 mg 13 C-acetate. "Arterialized" venous blood and breath samples were collected over 3 hours for measurements of plasma glucose, GLP-1, insulin and glucagon, and GE, respectively. RESULTS: Compared with control, both proximal and distal metformin reduced plasma glucose and augmented GLP-1 responses to oral glucose comparably (P < 0.05 each), without affecting plasma insulin or glucagon. GE was slower after proximal metformin than after control (P < 0.05) and tended to be slower after distal metformin, without any difference between proximal and distal metformin. CONCLUSIONS: In diet-controlled T2DM patients, glucose-lowering via a single dose of metformin administered to the upper and lower gut was comparable and was associated with stimulation of GLP-1 and slowing of GE. These observations suggest that the site of gastrointestinal administration is not critical to the glucose-lowering capacity of metformin.


Subject(s)
Blood Glucose/drug effects , Diabetes Mellitus, Type 2 , Gastric Emptying/drug effects , Glucagon-Like Peptide 1/blood , Glucose/administration & dosage , Intestine, Small/drug effects , Metformin/administration & dosage , Aged , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/physiopathology , Drug Administration Routes , Female , Glucose/pharmacokinetics , Glucose Tolerance Test , Humans , Intestine, Small/metabolism , Male , Middle Aged
8.
Diabetes Obes Metab ; 21(4): 930-938, 2019 04.
Article in English | MEDLINE | ID: mdl-30520216

ABSTRACT

AIMS: To evaluate the effects of 12 weeks of treatment with a whey/guar preload on gastric emptying, postprandial glycaemia and glycated haemoglobin (HbA1c) levels in people with type 2 diabetes (T2DM). MATERIALS AND METHODS: A total of 79 people with T2DM, managed on diet or metformin (HbA1c 49 ± 0.7 mmol/mol [6.6 ± 0.1%]), were randomized, in single-blind fashion, to receive 150 mL flavoured preloads, containing either 17 g whey protein plus 5 g guar (n = 37) or flavoured placebo (n = 42), 15 minutes before two meals, each day for 12 weeks. Blood glucose and gastric emptying (breath test) were measured before and after a mashed potato meal at baseline (without preload), and after the preload at the beginning (week 1) and end (week 12) of treatment. HbA1c levels, energy intake, weight and body composition were also evaluated. RESULTS: Gastric emptying was slower (P < 0.01) and postprandial blood glucose levels lower (P < 0.05) with the whey/guar preload compared to placebo preload, and the magnitude of reduction in glycaemia was related to the rate of gastric emptying at both week 1 (r = -0.54, P < 0.001) and week 12 (r = -0.54, P < 0.0001). At the end of treatment, there was a 1 mmol/mol [0.1%] reduction in HbA1c in the whey/guar group compared to the placebo group (49 ± 1.0 mmol/mol [6.6 ± 0.05%] vs. 50 ± 0.8 mmol/mol [6.7 ± 0.05%]; P < 0.05). There were no differences in energy intake, body weight, or lean or fat mass between the groups. CONCLUSIONS: In patients with well-controlled T2DM, 12 weeks' treatment with a low-dose whey/guar preload, taken twice daily before meals, had sustained effects of slowing gastric emptying and reducing postprandial blood glucose, which were associated with a modest reduction in HbA1c, without causing weight gain.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/therapy , Galactans/therapeutic use , Gastric Emptying , Glycated Hemoglobin/metabolism , Mannans/therapeutic use , Plant Gums/therapeutic use , Postprandial Period , Whey Proteins/therapeutic use , Aged , Body Composition , Body Weight , Diabetes Mellitus, Type 2/metabolism , Diet, Diabetic , Energy Intake , Female , Glucagon/metabolism , Glucagon-Like Peptide 1/metabolism , Humans , Hypoglycemic Agents/therapeutic use , Insulin/metabolism , Male , Metformin/therapeutic use , Middle Aged , Single-Blind Method
9.
Clin Nutr ; 38(6): 2827-2832, 2019 12.
Article in English | MEDLINE | ID: mdl-30583967

ABSTRACT

BACKGROUND AND AIMS: Whey protein and guar gum have both been reported to reduce postprandial glycemia in health and type 2 diabetes, associated with stimulation of glucagon-like peptide-1 (GLP-1) and/or slowing of gastric emptying. Our aim was to evaluate, in type 2 diabetes, the acute effects of low dose "preloads" of whey and guar, given alone or in combination before a meal, on postprandial glycemia, insulin, GLP-1, and gastric emptying. METHODS: 21 patients with type 2 diabetes, managed by diet or metformin alone, were each studied on 4 days. They received a preload "shake" 15min before a mashed potato meal (368.5 kcal) labeled with 13C-octanoic-acid. The preloads comprised either (i) 17 g whey (W), (ii) 5 g guar (G), (iii) 17 g whey + 5 g guar (WG) each sweetened with 60 mg sucralose, and (iv) 60 mg sucralose alone (control; C), all dissolved in 150 mL water. Venous blood was sampled frequently for measurements of glucose, insulin, and GLP-1 concentrations. Gastric half-emptying time (T50) was calculated from breath 13CO2 excretion over 240 min. RESULTS: Postprandial blood glucose concentrations were lower with W and WG compared to C (each P < 0.0001, treatment × time interaction), and lower after G than C only at 30min. Insulin, GLP-1, and glucagon concentrations were higher after W than WG, G, or C (P < 0.05, treatment × time interaction), without differences between the latter three. Gastric emptying was slower with W (T50: 179.6 ± 6.1 min, P < 0.05) and WG (T50: 197.6 ± 9.7 min, P < 0.0001) when compared to C (T50: 162.9 ± 6.2 min), but did not differ between G (T50: 171.3 ± 7.0) and C (P > 0.99). CONCLUSION: Both whey and whey/guar preloads reduced postprandial glycemia, associated with slowing of gastric emptying. Low dose guar was less effective as a preload for glucose-lowering and did not slow gastric emptying. CLINICAL TRIAL REGISTRY NUMBER AND WEBSITE: Australian and New Zealand Clinical Trials Registry, Trial ID ACTRN12615001272583, http://www.anzctr.org.au.


Subject(s)
Diabetes Mellitus, Type 2/blood , Galactans/blood , Galactans/pharmacology , Glycemic Index/drug effects , Mannans/blood , Mannans/pharmacology , Plant Gums/blood , Plant Gums/pharmacology , Postprandial Period , Whey Proteins/blood , Whey Proteins/pharmacology , Aged , Blood Glucose/drug effects , Female , Galactans/administration & dosage , Gastric Emptying/drug effects , Humans , Insulin/blood , Male , Mannans/administration & dosage , Plant Gums/administration & dosage , Whey Proteins/administration & dosage
10.
J Clin Endocrinol Metab ; 103(12): 4409-4418, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30053031

ABSTRACT

Context: The mechanisms regulating the postprandial suppression of ghrelin secretion remain unclear, but recent observations in rats indicate that an increase in duodenal osmolarity is associated with a reduction in ghrelin levels. Several hormones have been implicated in the regulation of ghrelin. Objective: We hypothesized that intraduodenal infusion of a hyperosmolar solution would lower plasma ghrelin concentrations. Design, Setting, Participants, and Interventions: Eighteen healthy young men were studied after an overnight fast on two occasions in a randomized double-blinded fashion. A nasoduodenal catheter was positioned and isoosmolar (300 mOsm/L) or hyperosmolar (1500 mOsm/L) saline was infused intraduodenally (4 mL/min, t = 0 to 45 minutes). Venous blood was sampled at t = -45, -30, -15, 0, 15, 30, 45, 60, 75, 90, 120, and 180 minutes. Main Outcome Measures: Plasma concentrations of ghrelin, glucagonlike peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), cholecystokinin (CCK), glucagon, pancreatic polypeptide (PP), neurotensin (NT), peptide YY (PYY), motilin, and glucose. Results: Ghrelin concentrations were suppressed with hyperosmolar when compared with isoosmolar saline, and remained lower until t = 180 minutes. CCK, NT, GLP-1, PYY, and glucagon all increased during hyperosmolar, but not isoosmolar, saline infusion (P < 0.01 for all), whereas GIP, PP, and motilin levels were not affected by either infusion. Conclusions: Plasma ghrelin concentrations are lowered, whereas CCK, GLP-1, PYY, NT, and glucagon concentrations are augmented, by hyperosmolar duodenal content in healthy individuals. These observations have implications for the evaluation of studies comparing the effects of different types and loads of nutrients and chemicals on gut hormone secretion.


Subject(s)
Duodenum/metabolism , Gastrointestinal Hormones/blood , Ghrelin/blood , Postprandial Period/physiology , Adult , Gastrointestinal Hormones/metabolism , Ghrelin/metabolism , Healthy Volunteers , Humans , Male , Osmolar Concentration , Saline Solution/administration & dosage , Saline Solution, Hypertonic/administration & dosage , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...