Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transplant ; 10(2): 431-3, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19958326

ABSTRACT

Intramuscular endocrine gland transplantation has been well described as it pertains to parathyroid autotransplantation; however, transplantation of the adrenal gland is less well characterized. While adrenal autotransplantation in the setting of Cushing's disease has been described, intramuscular adrenal allotransplantation as a cure for adrenal insufficiency to our knowledge has not been previously carried out. Current treatment for adrenal insufficiency leaves patients without diurnal variation in cortisol release and susceptible to the detrimental effects of chronic hypercortisolism. We describe here the case of a 5-year-old girl with renal failure who had adrenal insufficiency following fulminant meningococcemia that led to requirements for both stress-dose steroid and mineralocorticoid replacement. Ten months after the onset of her disease, she received a simultaneous renal and adrenal gland transplant from her mother. The adrenal gland allograft was morselized into 1 mm(3) segments and implanted into three 2 cm pockets created in her rectus abdominis muscle. Three years after surgery, her allograft remains fully functional, responding well to adrenocorticotropin hormone stimulation and the patient does not require any steroid or mineral-corticoid supplementation. We believe this case represents the first description of successful functional intramuscular adrenal allograft transplantation with long-term follow up as a cure for adrenal insufficiency.


Subject(s)
Adrenal Glands/transplantation , Cushing Syndrome/therapy , Addison Disease/drug therapy , Adrenal Insufficiency/drug therapy , Adrenocorticotropic Hormone/therapeutic use , Child, Preschool , Circadian Rhythm , Cushing Syndrome/drug therapy , Female , Humans , Hydrocortisone/therapeutic use , Pituitary ACTH Hypersecretion/drug therapy , Transplantation, Autologous
2.
J Neurochem ; 103(1): 216-28, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17587310

ABSTRACT

The beta-amyloid peptide (Abeta) is considered responsible for the pathogenesis of Alzheimer's disease. Despite the magnitude of reports describing a neurotoxic role of extracellular Abeta, the role for intracellular Abeta (iAbeta) has not been elucidated. We previously demonstrated that in rat pheochromocytoma cells expression of moderate levels of Abeta results in the up-regulation of phospho-extracellular signal-regulated kinases (ERK1)/2 along with an elevation of cyclic AMP-response element (CRE)-regulated gene expression; however, the effect of high intracellular levels of Abeta were not examined. Towards this goal we generated constructs that endogenously produce different expression levels of iAbeta in a human cell line. We show a bimodal response to Abeta in a neural human cell line. A moderate increase of endogenous Abeta up-regulates certain cyclic AMP-response element-binding protein (CREB) responsive genes such as presenilin 1, presenilin 2, brain-derived neurotrophic factor, and mRNA and protein levels by CREB activation and Synapsin 1 nuclear translocation. On the other hand, high-loads of iAbeta resulted in sustained hyper-phosphorylation of CREB that did not translocate to the nucleus and did not stimulate activation of CRE-regulated gene expression. Our study suggests that variations in levels of iAbeta could influence signaling mechanisms that lead to phosphorylation of CREB, its nuclear translocation and CRE-regulated genes involved in production of Abeta and synaptic plasticity in opposite directions.


Subject(s)
Amyloid beta-Peptides/metabolism , Cell Nucleus/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Intracellular Fluid/metabolism , Active Transport, Cell Nucleus , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Gene Expression Regulation , Gene Transfer Techniques , Humans , Mutation , PC12 Cells , Phosphorylation , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...