Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
J Dent Res ; 100(2): 179-186, 2021 02.
Article in English | MEDLINE | ID: mdl-33043806

ABSTRACT

The periodontal ligament (PDL) plays a critical role in providing immediate response to abrupt high loads during mastication while also facilitating slow remodeling of the alveolar bone. The PDL exceptional functionality is permitted by the unique nonuniform structure of the tissue. Two distinct areas that are critical to PDL function were previously identified: the furcation and the dense collar. Despite their hypothesized functions in tooth movement and maintenance, these 2 regions have not yet been compared within the context of their native environment. Therefore, the objective of this study is to elucidate the extracellular matrix (ECM) structure, composition, and biomechanical function of the furcation and the collar regions while maintaining the 3-dimensional (3D) structure in the murine PDL. We identify significant difference between the collar and furcation regions in both structure and mechanical properties. Specifically, we observed unique longitudinal structures in the dense collar that correlate with type VI collagen and LOX, both of which are associated with increased type I collagen density and tissue stiffness and are therefore proposed to function as scaffolds for tooth stabilization. We also found that the collar region is stiffer than the furcation region and therefore suggest that the dense collar acts as a suspense structure of the tooth within the bone during physiological loading. The furcation region of the PDL contained more proteins associated with reduced stiffness and higher tissue remodeling, as well as a dual mechanical behavior, suggesting a critical function in loads transfer and remodeling of the alveolar bone. In summary, this work unravels the nonuniform nature of the PDL within the 3D structural context and establishes understanding of regional PDL function, which opens new avenues for future studies of remodeling, regeneration, and disease.


Subject(s)
Periodontal Ligament , Tooth , Animals , Collagen Type I , Mastication , Mice , Tooth Movement Techniques
2.
Eur Cell Mater ; 38: 246-263, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31755076

ABSTRACT

While glucocorticoids have been used for over 50 years to treat rheumatoid and osteoarthritis pain, the prescription of glucocorticoids remains controversial because of potentially harmful side effects at the molecular, cellular and tissue levels. One member of the glucocorticoid family, dexamethasone (DEX) has recently been demonstrated to rescue cartilage matrix loss and chondrocyte viability in animal studies and cartilage explant models of tissue injury and post-traumatic osteoarthritis, suggesting the possibility of DEX as a disease-modifying drug if used appropriately. However, the literature on the effects of DEX on cartilage reveals conflicting results on the drug's safety, depending on the dose and duration of DEX exposure as well as the model system used. Overall, DEX has been shown to protect against arthritis-related changes in cartilage structure and function, including matrix loss, inflammation and cartilage viability. These beneficial effects are not always observed in model systems using initially healthy cartilage or isolated chondrocytes, where many studies have reported significant increases in chondrocyte apoptosis. It is crucially important to understand under what conditions DEX may be beneficial or harmful to cartilage and other joint tissues and to determine potential for safe use of this glucocorticoid in the clinic as a disease-modifying drug.


Subject(s)
Arthritis/drug therapy , Cartilage/drug effects , Dexamethasone/therapeutic use , Glucocorticoids/therapeutic use , Animals , Apoptosis , Cartilage/metabolism , Dexamethasone/adverse effects , Dexamethasone/pharmacology , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , Humans
3.
Osteoarthritis Cartilage ; 27(11): 1721-1728, 2019 11.
Article in English | MEDLINE | ID: mdl-31302235

ABSTRACT

OBJECTIVE: To investigate whether and how a sedentary lifestyle contributes to knee osteoarthritis (OA) incidence and severity. DESIGN: An experiment was conducted using Hartley guinea pigs, an established idiopathic knee OA model. To simulate a sedentary lifestyle, growing animals (n = 18) were housed for 22 weeks in small cages that restricted their mobility, while another group of animals (n = 17) received daily treadmill exercise to simulate moderate physical activity. After the experiment, histological assessments, biochemical assays, and mechanical testing were conducted to compare tibial articular cartilage structure, strength, and degree of OA degeneration between sedentary and physically active animals. Groups were also compared based on body weight and composition, as well as gut microbial community composition assessed using fecal 16S rRNA gene sequencing. RESULTS: Prevalence of knee OA was similar between sedentary and physically active animals, but severity of the disease (cartilage lesion depth) was substantially greater in the sedentary group (P = 0.02). In addition, during the experiment, sedentary animals developed cartilage with lower aggrecan quantity (P = 0.03) and accumulated more body weight (P = 0.005) and visceral adiposity (P = 0.007). Groups did not differ greatly, however, in terms of cartilage thickness, collagen quantity, or stiffness, nor in terms of muscle weight, subcutaneous adiposity, or gut microbial community composition. CONCLUSIONS: Our findings indicate that a sedentary lifestyle promotes the development of knee OA, particularly by enhancing disease severity rather than risk of onset, and this potentially occurs through multiple pathways including by engendering growth of functionally deficient joint tissues and the accumulation of excess body weight and adiposity.


Subject(s)
Cartilage, Articular/physiopathology , Knee Joint/physiopathology , Osteoarthritis, Knee/physiopathology , Physical Exertion/physiology , Physical Therapy Modalities , Animals , Disease Models, Animal , Guinea Pigs , Male , Osteoarthritis, Knee/rehabilitation
4.
Osteoarthritis Cartilage ; 26(2): 264-275, 2018 02.
Article in English | MEDLINE | ID: mdl-29169959

ABSTRACT

OBJECTIVE: The application of adjunctive mediators in Autologous chondrocyte implantation (ACI) techniques might be useful for improving the dedifferentiated chondrocyte phenotype, to support neocartilage formation and inhibit post-traumatic cartilage destruction. In this study we examined if (a) interleukin 10 treatment can cause chondrogenic phenotype stabilization and matrix preservation in mechanically injured cartilage and if (b) IL-10 can promote chondrogenesis in a clinically applied collagen scaffold for ACI treatment. MATERIALS AND METHODS: For (a) bovine articular cartilage was harvested, subjected to an axial unconfined injury and treated with bovine IL-10 (1-10,000 pg/ng/ml). For (b) a post-operatively remaining ACI graft was treated with human IL-10. Expression levels of type I/II/X collagen, SOX9 and aggrecan were measured by qPCR (a,b). After 3 weeks cell death was analyzed (nuclear blebbing and TUNEL assay) and matrix composition was determined by GAG measurements and immunohistochemistry (aggrecan, type I/II collagen, hyaluronic acid). STATISTICS: One way ANOVA analysis with Bonferroni's correction. RESULTS: (a) IL-10 stabilized the chondrogenic phenotype after injurious compression and preserved matrix integrity. This was indicated by elevated expression of chondrogenic markers COL2A1, ACAN, SOX9, while COL1A1 and COL10A1 were reduced. An increased GAG content paralleled this and histological staining of type 2 collagen, aggrecan and toluidine blue were enhanced after 3 weeks. (b) IL-10 [100 pg/ml] improved the chondrogenic differentiation of human chondrocytes, which was accompanied by cartilaginous matrix formation after 3 weeks of incubation. CONCLUSION: Interleukin-10 is a versatile adjuvant candidate to control the post-injurious environment in cartilage defects and promote chondrogenesis in ACI grafts.


Subject(s)
Cartilage, Articular/injuries , Chondrogenesis/drug effects , Interleukin-10/pharmacology , Animals , Apoptosis/drug effects , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cattle , Cells, Cultured , Chondrocytes/drug effects , Chondrocytes/pathology , Chondrocytes/transplantation , Collagen/metabolism , Extracellular Matrix/metabolism , Glycosaminoglycans/metabolism , Humans , Tissue Scaffolds
5.
Eur Cell Mater ; 34: 341-364, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29205258

ABSTRACT

Disease-modifying osteoarthritis drugs (DMOADs) should reach their intra-tissue target sites at optimal doses for clinical efficacy. The dense, negatively charged matrix of cartilage poses a major hindrance to the transport of potential therapeutics. In this work, electrostatic interactions were utilised to overcome this challenge and enable higher uptake, full-thickness penetration and enhanced retention of dexamethasone (Dex) inside rabbit cartilage. This was accomplished by using the positively charged glycoprotein avidin as nanocarrier, conjugated to Dex by releasable linkers. Therapeutic effects of a single intra-articular injection of low dose avidin-Dex (0.5 mg Dex) were evaluated in rabbits 3 weeks after anterior cruciate ligament transection (ACLT). Immunostaining confirmed that avidin penetrated the full cartilage thickness and was retained for at least 3 weeks. Avidin-Dex suppressed injury-induced joint swelling and catabolic gene expression to a greater extent than free Dex. It also significantly improved the histological score of cell infiltration and morphogenesis within the periarticular synovium. Micro-computed tomography confirmed the reduced incidence and volume of osteophytes following avidin-Dex treatment. However, neither treatment restored the loss of cartilage stiffness following ACLT, suggesting the need for a combinational therapy with a pro-anabolic factor for enhancing matrix biosynthesis. The avidin dose used caused significant glycosaminoglycan (GAG) loss, suggesting the use of higher Dex : avidin ratios in future formulations, such that the delivered avidin dose could be much less than that shown to affect GAGs. This charge-based delivery system converted cartilage into a drug depot that could also be employed for delivery to nearby synovium, menisci and ligaments, enabling clinical translation of a variety of DMOADs.


Subject(s)
Anterior Cruciate Ligament Injuries/drug therapy , Anti-Inflammatory Agents/pharmacology , Avidin/chemistry , Dexamethasone/pharmacology , Drug Carriers/chemical synthesis , Osteoarthritis/drug therapy , Animals , Anterior Cruciate Ligament/drug effects , Anterior Cruciate Ligament/metabolism , Anterior Cruciate Ligament/pathology , Anterior Cruciate Ligament Injuries/metabolism , Anterior Cruciate Ligament Injuries/pathology , Anti-Inflammatory Agents/pharmacokinetics , Avidin/pharmacokinetics , Biological Transport , Cartilage, Articular/drug effects , Cartilage, Articular/injuries , Cartilage, Articular/metabolism , Dexamethasone/pharmacokinetics , Disease Models, Animal , Drug Carriers/pharmacokinetics , Drug Dosage Calculations , Female , Glycosaminoglycans/metabolism , Injections, Intra-Articular , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteophyte/pathology , Osteophyte/prevention & control , Permeability , Rabbits , Static Electricity
6.
Osteoarthritis Cartilage ; 25(8): 1223-1237, 2017 08.
Article in English | MEDLINE | ID: mdl-28323138

ABSTRACT

OBJECTIVE: To investigate the impact of a daily exercise dose on cartilage composition and thickness, by conducting a systematic review of randomized controlled trials (RCTs) involving healthy animals. METHODS: A narrative synthesis of the effect of a daily exercise dose on knee cartilage aggrecan, collagen and thickness was performed. A subset of studies reporting sufficient data was combined in meta-analysis using a random-effects model. Meta-regression analyses were performed to investigate the impact of covariates. RESULTS: Twenty-nine RCTs, involving 64 comparisons, were included. In the low dose exercise group, 21/25 comparisons reported decreased or no effect on cartilage aggrecan, collagen and thickness. In the moderate dose exercise group, all 12 comparisons reported either no or increased effect. In the high dose exercise group, 19/27 comparisons reported decreased effect. A meta-analysis of 14 studies investigating cartilage thickness showed no effect in the low dose exercise group (SMD -0.02; 95% CI -0.42 to 0.38; I2 = 0.0%), large but non-significant cartilage thickening in the moderate dose exercise group (SMD 0.95; 95% CI -0.33 to 2.23; I2 = 72.1%) and non-significant cartilage thinning in the high dose exercise group (SMD -0.19; 95% CI -0.49 to 0.12; I2 = 0.0%). Results were independent of analyzed covariates. The overall quality of the studies was poor because of inadequate reporting of data and high risk of bias. CONCLUSIONS: Our results suggest that the relationship between daily exercise dose and cartilage composition, but not necessarily cartilage thickness, may be non-linear. While we found inconclusive evidence for a low daily dose of exercise, a high daily dose of exercise may have negative effects and a moderate daily dose of exercise may have positive effects on cartilage matrix composition in healthy animals.


Subject(s)
Animals, Laboratory/physiology , Cartilage, Articular/physiology , Physical Conditioning, Animal/physiology , Stifle/physiology , Aggrecans/analysis , Animals , Dogs , Extracellular Matrix/chemistry , Female , Guinea Pigs , Male , Rabbits , Randomized Controlled Trials as Topic , Rats , Stifle/chemistry
7.
Osteoarthritis Cartilage ; 24(11): 1981-1988, 2016 11.
Article in English | MEDLINE | ID: mdl-27349464

ABSTRACT

OBJECTIVE: The aim of this study was to examine whether anti-inflammatory interleukin-10 (IL-10) exerts chondroprotective effects in an in vitro model of a single mechanical injury of mature articular cartilage. METHOD: Articular cartilage was harvested from the femoro-patellar groove of adult cows (Bos taurus) and cultured w/o bovine IL-10. After 24 h of equilibration explants were subjected to an axial unconfined compression (50% strain, velocity 2 mm/s, held for 10 s). After 96 h cell death was measured histomorphometrically (nuclear blebbing, NB) and the release of glycosaminoglycans (GAG, DMMB assay) and nitric oxide (NO, Griess-reagent) were analyzed. mRNA levels of matrix degrading enzymes and nitric oxide synthetase were measured by quantitative real time PCR. Differences between groups were calculated using a one-way ANOVA with a Bonferroni post hoc test. RESULTS: Injurious compression significantly increased the number of cells with NB, release of GAG and nitric oxide and expression of MMP-3, -13, ADAMTS-4 and NOS2. Administration of IL-10 significantly reduced the injury related cell death and release of GAG and NO, respectively. Expression of MMP-3, -13, ADAMTS-4 and NOS2 were significantly reduced. CONCLUSION: Joint injury is a complex process involving specific mechanical effects on cartilage as well as induction of an inflammatory environment. IL-10 prevented crucial mechanisms of chondrodegeneration induced by an injurious single compression. IL-10 might be a multipurpose drug candidate for the treatment of cartilage-related sports injuries or osteoarthritis (OA).


Subject(s)
Apoptosis , Cartilage, Articular , Animals , Cattle , Extracellular Matrix , Interleukin-10 , Stress, Mechanical
8.
Osteoarthritis Cartilage ; 24(7): 1200-9, 2016 07.
Article in English | MEDLINE | ID: mdl-26879798

ABSTRACT

OBJECTIVES: Current repair procedures for articular cartilage (AC) cannot restore the tissue's original form and function because neither changes in its architectural blueprint throughout life nor the respective biological understanding is fully available. We asked whether two unique elements of human cartilage architecture, the chondrocyte-surrounding pericellular matrix (PCM) and the superficial chondrocyte spatial organization (SCSO) beneath the articular surface (AS) are congenital, stable or dynamic throughout life. We hypothesized that inducing chondrocyte proliferation in vitro impairs organization and PCM and induces an advanced osteoarthritis (OA)-like structural phenotype of human cartilage. METHODS: We recorded propidium-iodine-stained fetal and adult cartilage explants, arranged stages of organization into a sequence, and created a lifetime-summarizing SCSO model. To replicate the OA-associated dynamics revealed by our model, and to test our hypothesis, we transduced specifically early OA-explants with hFGF-2 for inducing proliferation. The PCM was examined using immuno- and auto-fluorescence, multiphoton second-harmonic-generation (SHG), and scanning electron microscopy (SEM). RESULTS: Spatial organization evolved from fetal homogeneity, peaked with adult string-like arrangements, but was completely lost in OA. Loss of organization included PCM perforation (local micro-fibrillar collagen intensity decrease) and destruction [regional collagen type VI (CollVI) signal weakness or absence]. Importantly, both loss of organization and PCM destruction were successfully recapitulated in FGF-2-transduced explants. CONCLUSION: Induced proliferation of spatially characterized early OA-chondrocytes within standardized explants recapitulated the full range of loss of SCSO and PCM destruction, introducing a novel in vitro methodology. This methodology induces a structural phenotype of human cartilage that is similar to advanced OA and potentially of significance and utility.


Subject(s)
Osteoarthritis , Cartilage, Articular , Chondrocytes , Extracellular Matrix , Fibroblast Growth Factor 2 , Humans
9.
Osteoarthritis Cartilage ; 24(1): 27-35, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26707990

ABSTRACT

Motivated by the conceptual framework of multi-scale biomechanics, this narrative review highlights recent major advances with a focus on gait and joint kinematics, then tissue-level mechanics, cell mechanics and mechanotransduction, matrix mechanics, and finally the nanoscale mechanics of matrix macromolecules. A literature review was conducted from January 2014 to April 2015 using PubMed to identify major developments in mechanics related to osteoarthritis (OA). Studies of knee adduction, flexion, rotation, and contact mechanics have extended our understanding of medial compartment loading. In turn, advances in measurement methodologies have shown how injuries to both the meniscus and ligaments, together, can alter joint kinematics. At the tissue scale, novel findings have emerged regarding the mechanics of the meniscus as well as cartilage superficial zone. Moving to the cell level, poroelastic and poro-viscoelastic mechanisms underlying chondrocyte deformation have been reported, along with the response to osmotic stress. Further developments have emerged on the role of calcium signaling in chondrocyte mechanobiology, including exciting findings on the function of mechanically activated cation channels newly found to be expressed in chondrocytes. Finally, AFM-based nano-rheology systems have enabled studies of thin murine tissues and brush layers of matrix molecules over a wide range of loading rates including high rates corresponding to impact injury. With OA acknowledged to be a disease of the joint as an organ, understanding mechanical behavior at each length scale helps to elucidate the connections between cell biology, matrix biochemistry and tissue structure/function that may play a role in the pathomechanics of OA.


Subject(s)
Cartilage, Articular/physiopathology , Chondrocytes/physiology , Knee Joint/physiopathology , Osteoarthritis, Knee/physiopathology , Animals , Biomechanical Phenomena , Calcium Signaling/physiology , Elasticity , Gait/physiology , Humans , Joints/physiopathology , Mechanotransduction, Cellular , Menisci, Tibial/physiopathology , Mice , Nanotechnology , Osteoarthritis/physiopathology , Rheology
10.
Osteoarthritis Cartilage ; 24(1): 71-81, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26211608

ABSTRACT

OBJECTIVE: Avidin exhibits ideal characteristics for targeted intra-cartilage drug delivery: its small size and optimal positive charge enable rapid penetration through full-thickness cartilage and electrostatic binding interactions that give long half-lives in vivo. Here we conjugated Avidin with dexamethasone (DEX) and tested the hypothesis that single-dose Avidin-delivered DEX can ameliorate catabolic effects in cytokine-challenged cartilage relevant to post-traumatic OA. METHODS: Avidin was covalently conjugated with DEX using fast (ester) and slow, pH-sensitive release (hydrazone) linkers. DEX release kinetics from these conjugates was characterized using (3)H-DEX-Avidin (scintillation counting). Cartilage explants treated with IL-1α were cultured with or without Avidin-DEX conjugates and compared to soluble DEX. Sulfated-glycosaminoglycan (sGAG) loss and biosynthesis rates were measured using DMMB assay and (35)S-incorporation, respectively. Chondrocyte viability was measured using fluorescence staining. RESULTS: Ester linker released DEX from Avidin significantly faster than hydrazone under physiological buffer conditions. Single dose Avidin-DEX suppressed cytokine-induced sGAG loss over 3-weeks, rescued IL-1α-induced cell death, and restored sGAG synthesis levels without causing cytotoxicity. The two Avidin-DEX conjugates in 1:1 combination (fast:slow) had the most prominent bioactivity compared to single dose soluble-DEX, which had a shorter-lived effect and thus needed continuous replenishment throughout the culture period to ameliorate catabolic effects. CONCLUSION: Intra-cartilage drug delivery remains inadequate as drugs rapidly clear from the joint, requiring multiple injections or sustained release of high doses in synovial fluid. A single dose of Avidin-conjugated drug enables rapid uptake and sustained delivery inside cartilage at low intratissue doses, and potentially can minimize unwanted drug exposure to other joint tissues.


Subject(s)
Avidin , Cartilage, Articular/drug effects , Chondrocytes/drug effects , Dexamethasone/pharmacology , Drug Carriers , Glucocorticoids/pharmacology , Interleukin-1alpha/pharmacology , Animals , Cartilage, Articular/metabolism , Cattle , Cell Survival/drug effects , Chondrocytes/metabolism , Dexamethasone/administration & dosage , Glucocorticoids/administration & dosage , Glycosaminoglycans/metabolism , In Vitro Techniques , Metabolism/drug effects , Nanoparticles
11.
Osteoarthritis Cartilage ; 23(2): 266-74, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25450855

ABSTRACT

OBJECTIVE: Interleukin-1 is one of the inflammatory cytokines elevated after traumatic joint injury that plays a critical role in mediating cartilage tissue degradation, suppressing matrix biosynthesis, and inducing chondrocyte apoptosis, events associated with progression to post-traumatic osteoarthritis (PTOA). We studied the combined use of insulin-like growth factor-1 (IGF-1) and dexamethasone (Dex) to block these multiple degradative effects of cytokine challenge to articular cartilage. METHODS: Young bovine and adult human articular cartilage explants were treated with IL-1α in the presence or absence of IGF-1, Dex, or their combination. Loss of sulfated glycosaminoglycans (sGAG) and collagen were evaluated by the DMMB and hydroxyproline assays, respectively. Matrix biosynthesis was measured via radiolabel incorporation, chondrocyte gene expression by qRT-PCR, and cell viability by fluorescence staining. RESULTS: In young bovine cartilage, the combination of IGF-1 and Dex significantly inhibited the loss of sGAG and collagen, rescued the suppression of matrix biosynthesis, and inhibited the loss of chondrocyte viability caused by IL-1α treatment. In adult human cartilage, only IGF-1 rescued matrix biosynthesis and only Dex inhibited sGAG loss and improved cell viability. Thus, the combination of IGF-1 + Dex together showed combined beneficial effects in human cartilage. CONCLUSIONS: Our findings suggest that the combination of IGF-1 and Dex has greater beneficial effects than either molecule alone in preventing cytokine-mediated cartilage degradation in adult human and young bovine cartilage. Our results support the use of such a combined approach as a potential treatment relevant to early cartilage degradative changes associated with joint injury.


Subject(s)
Cartilage, Articular/drug effects , Cartilage, Articular/injuries , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Insulin-Like Growth Factor I/pharmacology , Osteoarthritis/etiology , Animals , Cattle , Cytokines/administration & dosage , Dexamethasone/therapeutic use , Glucocorticoids/therapeutic use , Humans , Insulin-Like Growth Factor I/therapeutic use , Interleukin-1alpha/administration & dosage , Osteoarthritis/prevention & control
12.
Osteoarthritis Cartilage ; 21(12): 1933-41, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24007885

ABSTRACT

OBJECTIVE: Traumatic joint injury can initiate early cartilage degeneration in the presence of elevated inflammatory cytokines (e.g., tumor necrosis factor (TNF)-α and interleukin (IL)-6). The positive/negative effects of post-injury dynamic loading on cartilage degradation and repair in vivo are not well-understood. This study examined the effects of dynamic strain on immature bovine cartilage in vitro challenged with TNF-α + IL-6 and its soluble receptor (sIL-6R) with/without initial mechanical injury. METHODS: Groups of mechanically injured or non-injured explants were cultured in TNF-α + IL-6/sIL-6R for 8 days. Intermittent dynamic compression was applied concurrently at 10%, 20%, or 30% strain amplitude. Outcome measures included sulfated glycosaminoglycan (sGAG) loss (dimethylmethylene blue (DMMB)), aggrecan biosynthesis ((35)S-incorporation), aggrecanase activity (Western blot), chondrocyte viability (fluorescence staining) and apoptosis (nuclear blebbing via light microscopy), and gene expression (qPCR). RESULTS: In bovine explants, cytokine alone and injury-plus-cytokine treatments markedly increased sGAG loss and aggrecanase activity, and induced chondrocyte apoptosis. These effects were abolished by moderate 10% and 20% strains. However, 30% strain amplitude greatly increased apoptosis and had no inhibitory effect on aggrecanase activity. TNF + IL-6/sIL-6R downregulated matrix gene expression and upregulated expression of inflammatory genes, effects that were rescued by moderate dynamic strains but not by 30% strain. CONCLUSIONS: Moderate dynamic compression inhibits the pro-catabolic response of cartilage to mechanical injury and cytokine challenge, but there is a threshold strain amplitude above which loading becomes detrimental to cartilage. Our findings support the concept of appropriate loading for post-injury rehabilitation.


Subject(s)
Apoptosis/drug effects , Cartilage, Articular/drug effects , Chondrocytes/drug effects , Cytokines/pharmacology , Interleukin-6/pharmacology , Stress, Mechanical , Tumor Necrosis Factor-alpha/pharmacology , Aggrecans/drug effects , Aggrecans/genetics , Animals , Apoptosis/genetics , Cartilage, Articular/injuries , Cartilage, Articular/metabolism , Cattle , Cell Survival/drug effects , Chondrocytes/metabolism , Collagen Type II/drug effects , Collagen Type II/genetics , Cytokines/genetics , Down-Regulation , Endopeptidases/drug effects , Endopeptidases/metabolism , Gene Expression Regulation/drug effects , Glycosaminoglycans/metabolism , Interleukin-6/genetics , Receptors, Interleukin-6/genetics
13.
Osteoarthritis Cartilage ; 21(11): 1738-45, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23863610

ABSTRACT

OBJECTIVE: To study the effect of 17ß-estradiol (E2) and the superficial zone (SFZ) on cell death and proteoglycan degradation in articular cartilage after a single injurious compression in vitro. METHOD: Cartilage explants from the femoropatellar groove of 2 year old cows with or without the SFZ were cultured serum-free with physiological concentrations of E2 and injured by an unconfined single load compression (strain 50%, velocity 2 mm/s). After 96 h cell death was measured histomorphometrically (nuclear blebbing (NB) and TUNEL staining) and release of glycosaminoglycans (GAG) by DMMB assay. RESULTS: Injurious compression increased significantly the number of cells with NB and TUNEL staining and release of GAG. Physiological concentrations of E2 prevented the injury-related cell death and reduced the GAG release significantly in a receptor-mediated manner (shown by co-stimulation with the antiestrogen fulvestrant/faslodex/ICI-182,780). The presence of the SFZ did not alter the NB response to either the mechanical injury or E2, but reduced the overall release of GAG significantly. CONCLUSION: E2 prevents injury-related cell death and GAG release, and might be useful for the development of treatment options for either cartilage-related sports injuries or osteoarthritis (OA). The SFZ does not seem to play an important role in (1) the E2-related tissue response and (2) the mechanically-induced cell death in deeper regions of the explants and GAG release. The latter might be related to the unconfined nature of the injury model.


Subject(s)
Cartilage, Articular/drug effects , Estradiol/pharmacology , Proteoglycans/metabolism , Animals , Cartilage, Articular/injuries , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cattle , Cell Death/drug effects , Estradiol/analogs & derivatives , Estrogen Antagonists/pharmacology , Fulvestrant , Glycosaminoglycans/metabolism , Stress, Mechanical , Tissue Culture Techniques
14.
Osteoarthritis Cartilage ; 21(1): 209-16, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23069857

ABSTRACT

OBJECTIVE: To study mechanical overload of mature meniscal tissue under normal and pro-inflammatory conditions in vitro. METHOD: Three days after a single unconfined compression (strain: 25-75%, strain rate 1/s) of meniscal explants from 16 to 24 months-old cattle combined with interleukin-1-treatment (IL-1, 10 ng/ml) release of glycosaminoglycans (GAGs; dimethylmethylene blue (DMMB) assay), lactate dehydrogenase (LDH; cytotoxicity detection kit), and nitric oxide (NO; Griess assay), as well as gene transcription (quantitative reverse transcription polymerase chain reaction (RT-PCR)) and numbers of cells with condensed nuclei (CN; histomorphometry) were determined. RESULTS: Mean peak stresses during compression were about five (25%), 11 (50%), and 30 MPa (75%), respectively. GAG and LDH release and numbers of CN increased whereas NO production and mRNA levels of matrix metalloproteinase (MMP)-2, -3 and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 decreased strain-dependently after compression. IL-1 induced an increase in GAG and NO release as well as MMP-2, -3 and ADAMTS-4 levels, but had no impact on the LDH release and slightly increased numbers of CN. However, in combination with compression the tissue responses were reduced and LDH and CN levels were increased compared to IL-1 alone. CONCLUSION: Our data suggest that a single impact compression induces cell damage and release of GAG and reduces the NO production and transcription of certain matrix-degrading enzymes. It also reduces the capacity of meniscal tissue to respond to IL-1, which might be related to the cell damage and suggests that the compression-related GAG release might rather be the result of immediate extracellular matrix-damage than a cell-mediated event. This, however, needs to be confirmed in future studies.


Subject(s)
Interleukin-1/pharmacology , Menisci, Tibial/metabolism , Stress, Mechanical , Tibial Meniscus Injuries , ADAM Proteins/metabolism , ADAMTS4 Protein , Animals , Cattle , Cell Survival/drug effects , Glycosaminoglycans/metabolism , Hindlimb , L-Lactate Dehydrogenase/metabolism , Matrix Metalloproteinases/metabolism , Menisci, Tibial/drug effects , Nitric Oxide/metabolism , Procollagen N-Endopeptidase/metabolism , Transcription, Genetic/drug effects
15.
Osteoarthritis Cartilage ; 18(12): 1608-19, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20851201

ABSTRACT

OBJECTIVE: The goal of this study was to test the ability of an injectable self-assembling peptide (KLD) hydrogel with or without chondrogenic factors (CF) and allogeneic bone marrow stromal cells (BMSCs) to stimulate cartilage regeneration in a full-thickness, critically-sized, rabbit cartilage defect model in vivo. We used CF treatments to test the hypotheses that CF would stimulate chondrogenesis and matrix production by cells migrating into acellular KLD (KLD+CF) or by BMSCs delivered in KLD (KLD+CF+BMSCs). DESIGN: Three groups were tested against contralateral untreated controls: KLD, KLD+CF, and KLD+CF+BMSCs, n=6-7. Transforming growth factor-ß1 (TGF-ß1), dexamethasone, and insulin-like growth factor-1 (IGF-1) were used as CF pre-mixed with KLD and BMSCs before injection. Evaluations included gross, histological, immunohistochemical and radiographic analyses. RESULTS: KLD without CF or BMSCs showed the greatest repair after 12 weeks with significantly higher Safranin-O, collagen II immunostaining, and cumulative histology scores than untreated contralateral controls. KLD+CF resulted in significantly higher aggrecan immunostaining than untreated contralateral controls. Including allogeneic BMSCs+CF markedly reduced the quality of repair and increased osteophyte formation compared to KLD-alone. CONCLUSIONS: These data show that KLD can fill full-thickness osteochondral defects in situ and improve cartilage repair as shown by Safranin-O, collagen II immunostaining, and cumulative histology. In this small animal model, the full-thickness critically-sized defect provided access to the marrow, similar in concept to abrasion arthroplasty or spongialization in large animal models, and suggests that combining KLD with these techniques may improve current practice.


Subject(s)
Cartilage, Articular/injuries , Chondrogenesis/physiology , Mesenchymal Stem Cell Transplantation/methods , Tissue Engineering/methods , Animals , Bone Marrow Cells/cytology , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Cartilage, Articular/physiology , Chondrogenesis/drug effects , Dexamethasone/pharmacology , Female , Hydrogels , Insulin-Like Growth Factor I/pharmacology , Rabbits , Radiography , Regeneration/drug effects , Synovial Membrane/pathology , Tissue Scaffolds , Transforming Growth Factor beta1/pharmacology
16.
Osteoarthritis Cartilage ; 18(11): 1477-86, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20692354

ABSTRACT

OBJECTIVE: To quantify the structural characteristics and nanomechanical properties of aggrecan produced by adult bone marrow stromal cells (BMSCs) in peptide hydrogel scaffolds and compare to aggrecan from adult articular cartilage. DESIGN: Adult equine BMSCs were encapsulated in 3D-peptide hydrogels and cultured for 21 days with TGF-ß1 to induce chondrogenic differentiation. BMSC-aggrecan was extracted and compared with aggrecan from age-matched adult equine articular cartilage. Single molecules of aggrecan were visualized by atomic force microscopy-based imaging and aggrecan nanomechanical stiffness was quantified by high resolution force microscopy. Population-averaged measures of aggrecan hydrodynamic size, core protein structures and CS sulfation compositions were determined by size-exclusion chromatography, Western analysis, and fluorescence-assisted carbohydrate electrophoresis (FACE). RESULTS: BMSC-aggrecan was primarily full-length while cartilage-aggrecan had many fragments. Single molecule measurements showed that core protein and GAG chains of BMSC-aggrecan were markedly longer than those of cartilage-aggrecan. Comparing full-length aggrecan of both species, BMSC-aggrecan had longer GAG chains, while the core protein trace lengths were similar. FACE analysis detected a ∼ 1:1 ratio of chondroitin-4-sulfate to chondroitin-6-sulfate in BMSC-GAG, a phenotype consistent with aggrecan from skeletally-immature cartilage. The nanomechanical stiffness of BMSC-aggrecan was demonstrably greater than that of cartilage-aggrecan at the same total sGAG (fixed charge) density. CONCLUSIONS: The higher proportion of full-length monomers, longer GAG chains and greater stiffness of the BMSC-aggrecan makes it biomechanically superior to adult cartilage-aggrecan. Aggrecan stiffness was not solely dependent on fixed charge density, but also on GAG molecular ultrastructure. These results support the use of adult BMSCs for cell-based cartilage repair.


Subject(s)
Aggrecans/chemistry , Aggrecans/ultrastructure , Cartilage, Articular/chemistry , Cartilage, Articular/ultrastructure , Tissue Engineering/methods , Aggrecans/biosynthesis , Animals , Biomechanical Phenomena , Blotting, Western , Bone Marrow Cells/cytology , Electrophoresis/methods , Glycosaminoglycans/chemistry , Glycosaminoglycans/ultrastructure , Horses , Microscopy, Atomic Force , Nanotechnology , Stromal Cells/cytology
17.
Osteoarthritis Cartilage ; 18(7): 909-16, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20434573

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate the in-vivo time-dependent contact behavior of tibiofemoral cartilage of human subjects during the first 300 s after applying a constant full body weight loading and determine whether there are differences in cartilage contact responses between the medial and lateral compartments. DESIGN: Six healthy knees were investigated in this study. Each knee joint was subjected to full body weight loading and the in-vivo positions of the knee were captured by two orthogonal fluoroscopes during the first 300 s after applying the load. Three-dimensional models of the knee were created from MR images and used to reproduce the in-vivo knee positions recorded by the fluoroscopes. The time-dependent contact behavior of the cartilage was represented using the peak cartilage contact deformation and the cartilage contact area as functions of time under the constant full body weight. RESULTS: Both medial and lateral compartments showed a rapid increase in contact deformation and contact area during the first 20s of loading. After 50s of loading, the peak contact deformation values were 10.5+/-0.8% (medial) and 12.6+/-3.4% (lateral), and the contact areas were 223.9+/-14.8 mm(2) (medial) and 123.0+/-22.8 mm(2) (lateral). Thereafter, the peak cartilage contact deformation and contact area remained relatively constant. The respective changing rates of cartilage contact deformation were 1.4+/-0.9%/s (medial) and 3.1+/-2.5%/s (lateral); and of contact areas were 40.6+/-20.8 mm(2)/s (medial) and 24.0+/-11.4 mm(2)/s (lateral), at the first second of loading. Beyond 50 s, both changing rates approached zero. CONCLUSIONS: The peak cartilage contact deformation increased rapidly within the first 20s of loading and remained relatively constant after approximately 50 s of loading. The time-dependent response of cartilage contact behavior under constant full body weight loading was significantly different in the medial and lateral tibiofemoral compartments, with greater peak cartilage contact deformation on the lateral side and greater contact area on the medial side. These data can provide insight into normal in-vivo cartilage function and provide guidelines for the improvement of ex-vivo cartilage experiments and the validation of computational models that simulate human knee joint contact.


Subject(s)
Cartilage, Articular/physiology , Knee Joint/physiology , Weight-Bearing/physiology , Adult , Biomechanical Phenomena , Cartilage, Articular/anatomy & histology , Computer Simulation , Femur/physiology , Humans , Imaging, Three-Dimensional , Knee Joint/anatomy & histology , Male , Middle Aged , Tibia/physiology , Time Factors
18.
Matrix Biol ; 29(5): 427-38, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20153827

ABSTRACT

Our objective was to evaluate the age-dependent mechanical phenotype of bone marrow stromal cell- (BMSC-) and chondrocyte-produced cartilage-like neo-tissue and to elucidate the matrix-associated mechanisms which generate this phenotype. Cells from both immature (2-4 month-old foals) and skeletally-mature (2-5 year-old adults) mixed-breed horses were isolated from animal-matched bone marrow and cartilage tissue, encapsulated in self-assembling-peptide hydrogels, and cultured with and without TGF-beta1 supplementation. BMSCs and chondrocytes from both donor ages were encapsulated with high viability. BMSCs from both ages produced neo-tissue with higher mechanical stiffness than that produced by either young or adult chondrocytes. Young, but not adult, chondrocytes proliferated in response to TGF-beta1 while BMSCs from both age groups proliferated with TGF-beta1. Young chondrocytes stimulated by TGF-beta1 accumulated ECM with 10-fold higher sulfated-glycosaminoglycan content than adult chondrocytes and 2-3-fold higher than BMSCs of either age. The opposite trend was observed for hydroxyproline content, with BMSCs accumulating 2-3-fold more than chondrocytes, independent of age. Size-exclusion chromatography of extracted proteoglycans showed that an aggrecan-like peak was the predominant sulfated proteoglycan for all cell types. Direct measurement of aggrecan core protein length and chondroitin sulfate chain length by single molecule atomic force microscopy imaging revealed that, independent of age, BMSCs produced longer core protein and longer chondroitin sulfate chains, and fewer short core protein molecules than chondrocytes, suggesting that the BMSC-produced aggrecan has a phenotype more characteristic of young tissue than chondrocyte-produced aggrecan. Aggrecan ultrastructure, ECM composition, and cellular proliferation combine to suggest a mechanism by which BMSCs produce a superior cartilage-like neo-tissue than either young or adult chondrocytes.


Subject(s)
Aggrecans/biosynthesis , Bone Marrow Cells/physiology , Cartilage/physiology , Chondrocytes/physiology , Extracellular Matrix/physiology , Horses/physiology , Animals , Bone Marrow Cells/cytology , Cartilage/ultrastructure , Cell Survival/physiology , Chondrocytes/cytology , Chromatography, Gel , Extracellular Matrix/ultrastructure , Hydrogels/pharmacology , Hydroxyproline/physiology , Male , Microscopy, Atomic Force , Stress, Mechanical , Tissue Engineering/methods , Transforming Growth Factor beta/pharmacology
19.
Osteoarthritis Cartilage ; 18(2): 249-56, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19800448

ABSTRACT

OBJECTIVE: Our goal was to test the hypothesis that specific integrin receptors regulate chondrocyte biosynthetic response to dynamic compression at early times in 3D gel culture, during initial evolution of the pericellular matrix, but prior to significant accumulation of further-removed matrix. The study was motivated by increased use of dynamic loading, in vitro, for early stimulation of tissue engineered cartilage, and the need to understand the effects of loading, in vivo, at early times after implantation of constructs. METHODS: Bovine articular chondrocytes were seeded in 2% agarose gels (15x10(6)cells/mL) and incubated for 18 h with and without the presence of specific integrin blockers (small-molecule peptidomimetics, function-blocking antibodies, and RGD-containing disintegrins). Samples were then subjected to a 24-h dynamic compression regime found previously to stimulate chondrocyte biosynthesis in 3D gel as well as cartilage explant culture (1 Hz, 2.5% dynamic strain amplitude, 7% static offset strain). At the end of loading, proteoglycan (PG) synthesis ((35)S-sulfate incorporation), protein synthesis ((3)H-proline incorporation), DNA content (Hoechst dye 33258) and total glycosaminoglycan (GAG) content (dimethyl methylene blue (DMMB) dye binding) were assessed. RESULTS: Consistent with previous studies, dynamic compression increased PG synthesis and total GAG accumulation compared to free-swelling controls. Blocking alphavbeta3 abolished this response, independent of effects on controls, while blocking beta1 abolished the relative changes in synthesis when changes in free-swelling synthesis rates were observed. CONCLUSIONS: This study suggests that both alphavbeta3 and beta1 play a role in pathways that regulate stimulation of PG synthesis and accumulation by dynamic compression, but through distinct complementary mechanisms.


Subject(s)
Cartilage, Articular/physiology , Glycosaminoglycans/biosynthesis , Integrins/antagonists & inhibitors , Proteoglycans/biosynthesis , Animals , Cartilage, Articular/cytology , Cattle , Cells, Cultured , Chondrocytes , Compressive Strength/physiology , Culture Techniques/methods , Sepharose/chemistry , Stress, Mechanical
20.
Arch Biochem Biophys ; 489(1-2): 118-26, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19607802

ABSTRACT

We studied changes in chondrocyte gene expression, aggrecan degradation, and aggrecanase production and activity in normal and mechanically injured cartilage co-cultured with joint capsule tissue. Chondrocyte expression of 21 genes was measured at 1, 2, 4, 6, 12, and 24h after treatment; clustering analysis enabled identification of co-expression profiles. Aggrecan fragments retained in cartilage and released to medium and loss of cartilage sGAG were quantified. Increased expression of MMP-13 and ADAMTS4 clustered with effects of co-culture, while increased expression of ADAMTS5, MMP-3, TGF-beta, c-fos, c-jun clustered with cartilage injury. ADAMTS5 protein within cartilage (immunohistochemistry) increased following injury and with co-culture. Cartilage sGAG decreased over 16-days, most severely following injury plus co-culture. Cartilage aggrecan was cleaved at aggrecanase sites in the interglobular and C-terminal domains, resulting in loss of the G3 domain, especially after injury plus co-culture. Together, these results support the hypothesis that interactions between injured cartilage and other joint tissues are important in matrix catabolism after joint injury.


Subject(s)
ADAM Proteins/biosynthesis , Cartilage/injuries , Cartilage/metabolism , Chondrocytes/metabolism , Gene Expression Regulation , Joint Capsule/metabolism , Aggrecans/metabolism , Animals , Cartilage/pathology , Cattle , Chondrocytes/pathology , Coculture Techniques , Endopeptidases/metabolism , Joint Capsule/pathology , Matrix Metalloproteinase 13/biosynthesis , Protein Structure, Tertiary , Proto-Oncogene Proteins c-fos/biosynthesis , Proto-Oncogene Proteins c-jun/biosynthesis , Time Factors , Transforming Growth Factor beta/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...