Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1348990, 2024.
Article in English | MEDLINE | ID: mdl-38405148

ABSTRACT

Pasireotide is a somatostatin analogue for the treatment of acromegaly, a chronic condition caused by excess growth hormone. Despite the therapeutic benefits of pasireotide as a second-line treatment for inadequately controlled acromegaly, a major concern is its hyperglycemic side-effect. Here, we provide guidance on how to select appropriate patients with acromegaly for treatment with pasireotide. We summarize baseline characteristics of patients at high risk for pasireotide-associated hyperglycemia and recommend a monitoring strategy based on the risk profile. Self-monitoring of blood glucose levels (SMBG), measurements of fasting plasma glucose (FPG), postprandial plasma glucose (PPG) and regular HbA1c measurements are the foundation of our proposed monitoring approach. The pathophysiology of pasireotide-induced hyperglycemia involves decreased secretion of the incretin hormones GIP (glucose-dependent insulinotropic polypeptide) and GLP-1 (glucagon-like peptide-1). Our expert recommendations address the specific pathophysiology of pasireotide-induced hyperglycemia by recommending the incretin-based therapeutics dipeptidyl peptidase-4 inhibitors (DPP-4i) and glucagon-like peptide-1 receptor agonists (GLP-1 RA) in all appropriate patients as an alternative to first-line monotherapy with metformin. Furthermore, we emphasize the importance of adequate control of acromegaly, excellent diabetes education, nutrition and lifestyle guidance and advise to consult expert diabetologists in case of uncertainty in the management of patients with hyperglycemia under pasireotide.


Subject(s)
Acromegaly , Hyperglycemia , Somatostatin/analogs & derivatives , Humans , Acromegaly/drug therapy , Blood Glucose , Incretins , Somatostatin/adverse effects , Glucagon-Like Peptide 1
2.
Article in English | MEDLINE | ID: mdl-38215056

ABSTRACT

CONTEXT: Due to the heterogenous clinical symptoms and deficits, the diagnosis of diabetic polyneuropathy (DPN) is still difficult in clinical routine leading to increased morbidity and mortality. OBJECTIVE: We studied the correlation of phase angle (PhA) of bioelectrical impedance analysis (BIA) with clinical, laboratory and physical markers of DPN to evaluate PhA as possible diagnostic method for DPN. MATERIALS AND METHODS: In this cross-sectional observational study as part of the Heidelberg Study on Diabetes and Complications we examined 104 healthy individuals and 205 patients with type 2 diabetes mellitus (T2D), amongst which 63 had DPN. The PhA was calculated from multi-frequency BIA. Nerve conduction studies (NCS), quantitative sensory testing (QST) and diffusion-weighted magnetic resonance neurography (MRN) to determine fractional anisotropy (FA) reflecting peripheral nerve integrity were performed. RESULTS: T2D patients with DPN had lower PhA values (5.71 ± 0.10) compared to T2D patients without DPN (6.07 ± 0.08, p = 0.007, + 6.1%) and healthy controls (6.18 ± 0.08, p < 0.001, + 7.9%). Confounder-adjusted analyses showed correlations of the PhA with conduction velocities and amplitudes of the peroneal (ß=0.28; ß=0.31, p < 0.001) and tibial nerves (ß=0.28; ß=0.32, p < 0.001), Z-scores of QST (thermal detection ß=0.30, p < 0.05) and the FA (ß=0.60, p < 0.001). ROC analysis showed similar performance of PhA in comparison to mentioned diagnostic methods. CONCLUSION: The study shows that PhA is in comparison to other test systems used, at least an equally good and much easier to handle, investigator independent marker for detection of DPN.

3.
Eur J Neurol ; 29(10): 3081-3091, 2022 10.
Article in English | MEDLINE | ID: mdl-35700123

ABSTRACT

BACKGROUND AND PURPOSE: Diabetic sensorimotor peripheral neuropathy is usually considered to affect predominantly the lower limbs (LL-N), whereas the impact of upper limb neuropathy (UL-N) on hand functional performance and quality of life (QoL) has not been evaluated systematically. This study aims to investigate the prevalence and characteristics of UL-N and its functional and psychosocial consequences in type 2 diabetes. METHODS: Individuals with type 2 diabetes (n = 141) and an age- and sex-matched control group (n = 73) underwent comprehensive assessment of neuropathy, hand functional performance, and psychosocial status. RESULTS: The prevalence of UL-N was 30.5% in patients with diabetes and that of LL-N was 49.6%, with 25.5% exhibiting both. Patients with diabetes showed similar sensory phenotype regarding both large and small fiber functions in hands and feet. Patients with UL-N showed reduced manual dexterity, but normal hand grip force. Additionally, there was a correlation between reduced dexterity and sensory deficits. Patients with UL-N had reduced estimates of psychosocial health including health-related QoL compared to control subjects and patients without UL-N. UL-N correlated with the severity of LL-N, but not with duration of diabetes, glycemia, age, or sex. CONCLUSIONS: This study points to a substantial prevalence of UL-N in type 2 diabetes. The sensory phenotype of patients with UL-N was similar to LL-N and was characterized by loss of sensory function. Our study demonstrated an association of UL-N with impaired manual dexterity and reduced health-related QoL. Thus, upper limb sensorimotor functions should be assessed early in patients with diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetic Neuropathies/epidemiology , Hand , Hand Strength , Humans , Physical Functional Performance , Quality of Life , Upper Extremity
5.
Diabetologia ; 64(12): 2843-2855, 2021 12.
Article in English | MEDLINE | ID: mdl-34480211

ABSTRACT

AIMS/HYPOTHESIS: The individual risk of progression of diabetic peripheral neuropathy is difficult to predict for each individual. Mutations in proteins that are responsible for the process of myelination are known to cause neurodegeneration and display alteration in experimental models of diabetic neuropathy. In a prospective observational human pilot study, we investigated myelin-specific circulating mRNA targets, which have been identified in vitro, for their capacity in the diagnosis and prediction of diabetic neuropathy. The most promising candidate was tested against the recently established biomarker of neural damage, neurofilament light chain protein. METHODS: Schwann cells were cultured under high-glucose conditions and mRNAs of various myelin-specific genes were screened intra- and extracellularly. Ninety-two participants with type 2 diabetes and 30 control participants were enrolled and evaluated for peripheral neuropathy using neuropathy deficit scores, neuropathy symptom scores and nerve conduction studies as well as quantitative sensory testing at baseline and after 12/24 months of a follow-up period. Magnetic resonance neurography of the sciatic nerve was performed in 37 individuals. Neurofilament light chain protein and four myelin-specific mRNA transcripts derived from in vitro screenings were measured in the serum of all participants. The results were tested for associations with specific neuropathic deficits, fractional anisotropy and the progression of neuropathic deficits at baseline and after 12 and 24 months. RESULTS: In neuronal Schwann cells and human nerve sections, myelin protein zero was identified as the strongest candidate for a biomarker study. Circulating mRNA of myelin protein zero was decreased significantly in participants with diabetic neuropathy (p < 0.001), whereas neurofilament light chain protein showed increased levels in participants with diabetic neuropathy (p < 0.05). Both variables were linked to altered electrophysiology, fractional anisotropy and quantitative sensory testing. In a receiver-operating characteristic curve analysis myelin protein zero improved the diagnostic performance significantly in combination with a standard model (diabetes duration, age, BMI, HbA1c) from an AUC of 0.681 to 0.836 for the detection of diabetic peripheral neuropathy. A follow-up study revealed that increased neurofilament light chain was associated with the development of a hyperalgesic phenotype (p < 0.05), whereas decreased myelin protein zero predicted hypoalgesia (p < 0.001) and progressive loss of nerve function 24 months in advance (HR of 6.519). CONCLUSIONS/INTERPRETATION: This study introduces a dynamic and non-invasive assessment strategy for the underlying pathogenesis of diabetic peripheral neuropathy. The diagnosis of axonal degeneration, associated with hyperalgesia, and demyelination, linked to hypoalgesia, could benefit from the usage of neurofilament light chain protein and circulating mRNA of myelin protein zero as potential biomarkers.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Biomarkers , Diabetes Mellitus, Type 2/complications , Diabetic Neuropathies/pathology , Follow-Up Studies , Humans , Hyperalgesia/complications , Neurons/metabolism , Pilot Projects
6.
Front Neurosci ; 15: 642589, 2021.
Article in English | MEDLINE | ID: mdl-33746707

ABSTRACT

BACKGROUND: Nerve damage in diabetic neuropathy (DN) is assumed to begin in the distal legs with a subsequent progression to hands and arms at later stages. In contrast, recent studies have found that lower limb nerve lesions in DN predominate at the proximal sciatic nerve and that, in the upper limb, nerve functions can be impaired at early stages of DN. MATERIALS AND METHODS: In this prospective, single-center cross-sectional study, participants underwent diffusion-weighted 3 Tesla magnetic resonance neurography in order to calculate the sciatic nerve's fractional anisotropy (FA), a surrogate parameter for structural nerve integrity. Results were correlated with clinical and electrophysiological assessments of the lower limb and an examination of hand function derived from the Purdue Pegboard Test. RESULTS: Overall, 71 patients with diabetes, 11 patients with prediabetes and 25 age-matched control subjects took part in this study. In patients with diabetes, the sciatic nerve's FA showed positive correlations with tibial and peroneal nerve conduction velocities (r = 0.62; p < 0.001 and r = 0.56; p < 0.001, respectively), and tibial and peroneal nerve compound motor action potentials (r = 0.62; p < 0.001 and r = 0.63; p < 0.001, respectively). Moreover, the sciatic nerve's FA was correlated with the Pegboard Test results in patients with diabetes (r = 0.52; p < 0.001), prediabetes (r = 0.76; p < 0.001) and in controls (r = 0.79; p = 0.007). CONCLUSION: This study is the first to show that the sciatic nerve's FA is a surrogate marker for functional and electrophysiological parameters of both upper and lower limbs in patients with diabetes and prediabetes, suggesting that nerve damage in these patients is not restricted to the level of the symptomatic limbs but rather affects the entire peripheral nervous system.

7.
Front Neurosci ; 15: 811085, 2021.
Article in English | MEDLINE | ID: mdl-35242003

ABSTRACT

OBJECTIVE: It is controversially discussed in how far smoking contributes to diabetic polyneuropathy (DPN) in type 2 diabetes (T2D). Diffusion-weighted magnetic resonance neurography (MRN) at 3 Tesla has been shown to provide objective values for structural nerve integrity in patients with T2D. The aim of this study was to investigate the contribution of cigarette smoking on structural nerve integrity in T2D. METHODS: This cross-sectional prospective cohort study investigated the structural integrity of the sciatic nerve in 10 smokers, 40 never-smokers, and 20 ex-smokers with T2D and 10 healthy control subjects, using diffusion tensor imaging MRN at 3 Tesla and semi-automated nerve fiber tracking. Results were correlated with clinical, electrophysiological, and serological data. RESULTS: The sciatic nerve's fractional anisotropy (FA), a parameter for structural nerve integrity, was significantly lower in smokers with T2D when compared to controls (p = 0.002) and never-smokers (p = 0.015), and lower in ex-smokers when compared to controls (p = 0.015). In addition, sciatic nerve radial diffusivity, a marker of myelin damage, was increased in smokers versus controls and never-smokers (p = 0.048, p = 0.049, respectively). Furthermore, FA in T2D patients was negatively correlated with clinical and electrophysiological markers of DPN. FA also showed negative correlations with the pulse wave velocity, a marker of arterial stiffness and associated microangiopathy, in controls (r = -0.70; p = 0.037), never-smokers (r = -0.45; p = 0.004), ex-smokers (r = -0.55; p = 0.009), and a similar trend in smokers (r = -0.63; p = 0.076). Negative correlations were found between FA and skin auto-fluorescence, a marker of tissue advanced glycation end product accumulation and therefore long-term glycemic stress in T2D, in never-smokers (r = -0.39; p = 0.020) and smokers (r = -0.84; p = 0.004), but not in ex-smokers (r = -0.07; p = 0.765). CONCLUSION: The findings indicate that smoking contributes to sciatic nerve damage in T2D, potentially worsening DPN due to glycemic stress and less microangiopathy-associated myelin damage in active smokers, while angiopathic effects predominate in ex-smokers. To stop smoking may therefore pose a promising preventive measure to slow the progression of DPN in T2D.

8.
Front Neurosci ; 14: 570744, 2020.
Article in English | MEDLINE | ID: mdl-33100960

ABSTRACT

Diabetic neuropathy (DPN) is one of the most severe and yet most poorly understood complications of diabetes mellitus. In vivo imaging of dorsal root ganglia (DRG), a key structure for the understanding of DPN, has been restricted to animal studies. These have shown a correlation of decreased DRG volume with neuropathic symptom severity. Our objective was to investigate correlations of DRG morphology and signal characteristics at 3 Tesla (3T) magnetic resonance neurography (MRN) with clinical and serological data in diabetic patients with and without DPN. In this cross-sectional study, participants underwent 3T MRN of both L5 DRG using an isotropic 3D T2-weighted, fat-suppressed sequence with subsequent segmentation of DRG volume and analysis of normalized signal properties. Overall, 55 diabetes patients (66 ± 9 years; 32 men; 30 with DPN) took part in this study. DRG volume was smaller in patients with severe DPN when compared to patients with mild or moderate DPN (134.7 ± 21.86 vs 170.1 ± 49.22; p = 0.040). In DPN patients, DRG volume was negatively correlated with the neuropathy disability score (r = -0.43; 95%CI = -0.66 to -0.14; p = 0.02), a measure of neuropathy severity. DRG volume showed negative correlations with triglycerides (r = -0.40; 95%CI = -0.57 to -0.19; p = 0.006), and LDL cholesterol (r = -0.33; 95%CI = -0.51 to -0.11; p = 0.04). There was a strong positive correlation of normalized MR signal intensity (SI) with the neuropathy symptom score in the subgroup of patients with painful DPN (r = 0.80; 95%CI = 0.46 to 0.93; p = 0.005). DRG SI was positively correlated with HbA1c levels (r = 0.30; 95%CI = 0.09 to 0.50; p = 0.03) and the triglyceride/HDL ratio (r = 0.40; 95%CI = 0.19 to 0.57; p = 0.007). In this first in vivo study, we found DRG morphological degeneration and signal increase in correlation with neuropathy severity. This elucidates the potential importance of MR-based DRG assessments in studying structural and functional changes in DPN.

9.
Diabetes ; 69(4): 713-723, 2020 04.
Article in English | MEDLINE | ID: mdl-31974140

ABSTRACT

Clinical studies have suggested that changes in peripheral nerve microcirculation may contribute to nerve damage in diabetic polyneuropathy (DN). High-sensitivity troponin T (hsTNT) assays have been recently shown to provide predictive values for both cardiac and peripheral microangiopathy in type 2 diabetes (T2D). This study investigated the association of sciatic nerve structural damage in 3 Tesla (3T) magnetic resonance neurography (MRN) with hsTNT and N-terminal pro-brain natriuretic peptide serum levels in patients with T2D. MRN at 3T was performed in 51 patients with T2D (23 without DN, 28 with DN) and 10 control subjects without diabetes. The sciatic nerve's fractional anisotropy (FA), a marker of structural nerve integrity, was correlated with clinical, electrophysiological, and serological data. In patients with T2D, hsTNT showed a negative correlation with the sciatic nerve's FA (r = -0.52, P < 0.001), with a closer correlation in DN patients (r = -0.66, P < 0.001). hsTNT further correlated positively with the neuropathy disability score (r = 0.39, P = 0.005). Negative correlations were found with sural nerve conduction velocities (NCVs) (r = -0.65, P < 0.001) and tibial NCVs (r = -0.44, P = 0.002) and amplitudes (r = -0.53, P < 0.001). This study is the first to show that hsTNT is a potential indicator for structural nerve damage in T2D. Our results indirectly support the hypothesis that microangiopathy contributes to structural nerve damage in T2D.


Subject(s)
Diabetes Mellitus, Type 2/diagnostic imaging , Diabetic Angiopathies/diagnosis , Diabetic Neuropathies/diagnosis , Magnetic Resonance Imaging/methods , Sciatic Nerve/diagnostic imaging , Troponin T/blood , Adult , Aged , Biomarkers/blood , Case-Control Studies , Cross-Sectional Studies , Diabetes Mellitus, Type 2/blood , Diabetic Angiopathies/blood , Diabetic Angiopathies/diagnostic imaging , Diabetic Neuropathies/blood , Diabetic Neuropathies/diagnostic imaging , Female , Humans , Male , Middle Aged
10.
Radiology ; 294(2): 405-414, 2020 02.
Article in English | MEDLINE | ID: mdl-31891321

ABSTRACT

Background The pathophysiologic mechanisms underlying painful symptoms in diabetic polyneuropathy (DPN) are poorly understood. They may be associated with MRI characteristics, which have not yet been investigated. Purpose To investigate correlations between nerve structure, load and spatial distribution of nerve lesions, and pain in patients with DPN. Materials and Methods In this prospective single-center cross-sectional study, participants with type 1 or 2 diabetes volunteered between June 2015 and March 2018. Participants underwent 3-T MR neurography of the sciatic nerve with a T2-weighed fat-suppressed sequence, which was preceded by clinical and electrophysiologic tests. For group comparisons, analysis of variance or the Kruskal-Wallis test was performed depending on Gaussian or non-Gaussian distribution of data. Spearman correlation coefficients were calculated for correlation analysis. Results A total of 131 participants (mean age, 62 years ± 11 [standard deviation]; 82 men) with either type 1 (n = 45) or type 2 (n = 86) diabetes were evaluated with painful (n = 64), painless (n = 37), or no (n = 30) DPN. Participants who had painful diabetic neuropathy had a higher percentage of nerve lesions in the full nerve volume (15.2% ± 1.6) than did participants with nonpainful DPN (10.4% ± 1.7, P = .03) or no DPN (8.3% ± 1.7; P < .001). The amount and extension of T2-weighted hyperintense nerve lesions correlated positively with the neuropathy disability score (r = 0.37; 95% confidence interval [CI]: 0.21, 0.52; r = 0.37; 95% CI: 0.20, 0.52, respectively) and the neuropathy symptom score (r = 0.41; 95% CI: 0.25, 0.55; r = 0.34; 95% CI: 0.17, 0.49, respectively). Negative correlations were found for the tibial nerve conduction velocity (r = -0.23; 95% CI: -0.44, -0.01; r = -0.37; 95% CI: -0.55, -0.15, respectively). The cross-sectional area of the nerve was positively correlated with the neuropathy disability score (r = 0.23; 95% CI: 0.03, 0.36). Negative correlations were found for the tibial nerve conduction velocity (r = -0.24; 95% CI: -0.45, -0.01). Conclusion The amount and extension of T2-weighted hyperintense fascicular nerve lesions were greater in patients with painful diabetic neuropathy than in those with painless diabetic neuropathy. These results suggest that proximal fascicular damage is associated with the evolution of painful sensory symptoms in diabetic polyneuropathy. © RSNA, 2019 Online supplemental material is available for this article.


Subject(s)
Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 2/complications , Diabetic Neuropathies/complications , Magnetic Resonance Imaging/methods , Pain/etiology , Peripheral Nerves/diagnostic imaging , Aged , Cross-Sectional Studies , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/pathology , Diabetic Neuropathies/pathology , Female , Humans , Male , Middle Aged , Pain/pathology , Peripheral Nerves/pathology , Prospective Studies
11.
Diabetes ; 69(3): 436-447, 2020 03.
Article in English | MEDLINE | ID: mdl-31826867

ABSTRACT

Studies on magnetic resonance neurography (MRN) in diabetic polyneuropathy (DPN) have found proximal sciatic nerve lesions. The aim of this study was to evaluate the functional relevance of sciatic nerve lesions in DPN, with the expectation of correlations with the impairment of large-fiber function. Sixty-one patients with type 2 diabetes (48 with and 13 without DPN) and 12 control subjects were enrolled and underwent MRN, quantitative sensory testing, and electrophysiological examinations. There were differences in mechanical detection (Aß fibers) and mechanical pain (Aδ fibers) but not in thermal pain and thermal detection clusters (C fibers) among the groups. Lesion load correlated with lower Aα-, Aß-, and Aδ-fiber but not with C-fiber function in all participants. Patients with lower function showed a higher load of nerve lesions than patients with elevated function or no measurable deficit despite apparent DPN. Longer diabetes duration was associated with higher lesion load in patients with DPN, suggesting that nerve lesions in DPN may accumulate over time and become clinically relevant once a critical amount of nerve fascicles is affected. Moreover, MRN is an objective method for determining lower function mainly in medium and large fibers in DPN.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Diabetic Neuropathies/diagnostic imaging , Neural Conduction , Sciatic Nerve/diagnostic imaging , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Diabetic Neuropathies/etiology , Diabetic Neuropathies/physiopathology , Electrodiagnosis , Female , Glycated Hemoglobin/metabolism , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Fibers, Myelinated/physiology , Nerve Fibers, Unmyelinated/physiology , Nociception/physiology , Pain/physiopathology , Sciatic Nerve/physiopathology , Severity of Illness Index , Touch/physiology
12.
PLoS One ; 14(9): e0222771, 2019.
Article in English | MEDLINE | ID: mdl-31536600

ABSTRACT

Asprosin is a counter-regulatory hormone to insulin which plays a role in fasting. It may therefore also play a role in hypoglycaemia unawareness, which has been subsequently examined in this pilot study. Intravenous glucose tolerance test was used to induce controlled hyperglycemia whereas a hyperinsulinemic clamp test was used to induce a controlled hypoglycaemia in 15 patients with diabetes type 1, with and without hypoglycaemia unawareness. Changes in asprosin plasma levels did not differ between patients with and without hypoglycaemia unawareness. However, nine patients with insulin resistance as well as higher liver stiffness values and low-density lipoprotein but lower high-density lipoprotein levels did not show the expected increase in asprosin plasma levels during hypoglycemia. Therefore, insulin resistance and alterations in liver structure, most likely early stages of non-alcoholic fatty liver disease, seem to be relevant in type 1 diabetes and do not only lead to elevated plasma levels of asprosin, but also to a blunted asprosin response in hypoglycemia.


Subject(s)
Diabetes Mellitus, Type 1/blood , Hypoglycemia/blood , Insulin Resistance , Microfilament Proteins/blood , Peptide Fragments/blood , Peptide Hormones/blood , Adult , Aged , Blood Glucose/metabolism , Cohort Studies , Cross-Sectional Studies , Female , Fibrillin-1 , Glucose Tolerance Test , Humans , Insulin/blood , Liver/metabolism , Liver/pathology , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/pathology , Pilot Projects
13.
Orv Hetil ; 160(34): 1346-1352, 2019 Aug.
Article in Hungarian | MEDLINE | ID: mdl-31423831

ABSTRACT

Introduction: Some meta-analyses suggested a positive effect of metformin therapy on lipid parameters, but the potential beneficial effect of metformin on cardiovascular risk in type 2 diabetes is not entirely clear. Aim: We investigated the effect of metformin therapy on lipid parameters and cardiovascular risk in patients with type 2 diabetes. Method: In a cross-sectional, monocentric study, 102 patients with type 2 diabetes without lipid-lowering medication were analysed for lipid profile and cardiovascular risk (United Kingdom Prospective Diabetes Study Risk Calculator) depending on metformin therapy. The patients were divided into two subgroups regarding with (n = 52) or without metformin therapy (n = 50). Results: Patients with metformin therapy had significantly lower total cholesterol and LDL cholesterol levels than patients without metformin (p<0.01 and p<0.05). This effect was independent from glucose control. No intrinsic effect of metformin could be found on systolic blood pressure, HDL cholesterol, triglycerides, and long-term cardiovascular risk using a multivariable risk assessment score. Conclusion: Metformin therapy has beneficial effects on cholesterol levels without improving cardiovascular risk in patients with type 2 diabetes. Orv Hetil. 2019; 160(34): 1346-1352.


Subject(s)
Cardiovascular Diseases/prevention & control , Cholesterol, HDL/drug effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/adverse effects , Metformin/adverse effects , Cardiovascular Diseases/epidemiology , Cholesterol/blood , Cholesterol, HDL/blood , Cross-Sectional Studies , Diabetes Mellitus, Type 2/physiopathology , Female , Humans , Hypoglycemic Agents/therapeutic use , Lipids/blood , Metformin/therapeutic use , Prospective Studies , Risk Factors , United Kingdom
14.
JAMA Netw Open ; 2(5): e194798, 2019 05 03.
Article in English | MEDLINE | ID: mdl-31150078

ABSTRACT

Importance: Lowering serum cholesterol levels is a well-established treatment for dyslipidemia in patients with type 2 diabetes (T2D). However, nerve lesions in patients with T2D increase with lower serum cholesterol levels, suggesting that lowering serum cholesterol levels is associated with diabetic polyneuropathy (DPN) in patients with T2D. Objective: To investigate whether there is an association between serum cholesterol levels and peripheral nerve lesions in patients with T2D with and without DPN. Design, Setting, and Participants: This single-center, cross-sectional, prospective cohort study was performed from June 1, 2015, to March 31, 2018. Observers were blinded to clinical data. A total of 256 participants were approached, of whom 156 were excluded. A total of 100 participants consented to undergo magnetic resonance neurography of the right leg at the Department of Neuroradiology and clinical, serologic, and electrophysiologic assessment at the Department of Endocrinology, Heidelberg University Hospital, Heidelberg, Germany. Exposures: Quantification of the nerve's diameter and lipid equivalent lesion (LEL) load with a subsequent analysis of all acquired clinical and serologic data with use of 3.0-T magnetic resonance neurography of the right leg with 3-dimensional reconstruction of the sciatic nerve. Main Outcomes and Measures: The primary outcome was lesion load and extension. Secondary outcomes were clinical, serologic, and electrophysiologic findings. Results: A total of 100 participants with T2D (mean [SD] age, 64.6 [0.9] years; 68 [68.0%] male) participated in the study. The LEL load correlated positively with the nerve's mean cross-sectional area (r = 0.44; P < .001) and the maximum length of a lesion (r = 0.71; P < .001). The LEL load was negatively associated with total serum cholesterol level (r = -0.41; P < .001), high-density lipoprotein cholesterol level (r = -0.30; P = .006), low-density lipoprotein cholesterol level (r = -0.33; P = .003), nerve conduction velocities of the tibial (r = -0.33; P = .01) and peroneal (r = -0.51; P < .001) nerves, and nerve conduction amplitudes of the tibial (r = -0.31; P = .02) and peroneal (r = -0.28; P = .03) nerves. Conclusions and Relevance: The findings suggest that lowering serum cholesterol levels in patients with T2D and DPN is associated with a higher amount of nerve lesions and declining nerve conduction velocities and amplitudes. These findings may be relevant to emerging therapies that promote an aggressive lowering of serum cholesterol levels in patients with T2D.


Subject(s)
Cholesterol, LDL/blood , Diabetes Mellitus, Type 2/complications , Diabetic Neuropathies/etiology , Peroneal Nerve/pathology , Tibial Nerve/pathology , Aged , Cross-Sectional Studies , Diabetes Mellitus, Type 2/blood , Diabetic Neuropathies/blood , Diabetic Neuropathies/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Conduction/physiology , Peroneal Nerve/diagnostic imaging , Prospective Studies , Tibial Nerve/diagnostic imaging
15.
Exp Clin Endocrinol Diabetes ; 127(8): 497-504, 2019 Sep.
Article in English | MEDLINE | ID: mdl-28407670

ABSTRACT

Hyperglycemia explains the development of late diabetic complications in patients with diabetes type 1 and type 2 only partially. Most therapeutic efforts relying on intensive glucose control failed to decrease the absolute risk for complications by more than 10%, especially in patients with diabetes type 2. Therefore, alternative pathophysiological pathways have to be examined, in order to develop more individualized treatment options for patients with diabetes in the future. One such pathway might be the metabolism of dicarbonyls, among them methylglyoxal and the accumulation of advanced glycation end products. Here we review currently available epidemiological data on dicarbonyls and AGEs in association with human diabetes type 1 and type 2.


Subject(s)
Diabetes Complications/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Glycation End Products, Advanced/metabolism , Pyruvaldehyde/metabolism , Humans
16.
Exp Clin Endocrinol Diabetes ; 127(4): 203-214, 2019 Apr.
Article in English | MEDLINE | ID: mdl-29421830

ABSTRACT

Levels of reactive metabolites such as reactive carbonyl and oxygen species are increased in patients with diabetes mellitus. The most important reactive dicarbonyl species, methylglyoxal (MG), formed as by-product during glucose metabolism, is more and more recognized as a trigger for the development and progression of diabetic complications. Although it is clear that MG provokes toxic effects, it is currently not well understood what cellular changes MG induces on a molecular level that may lead to pathophysiological conditions found in long-term diabetic complications. Here we review the current knowledge about the molecular effects that MG can induce in a cell. Within the mammalian system, we will focus mostly on the metabolic effects MG exerts when applied systemically to rodents or when applied in vitro to pancreatic ß-cells and adipocytes. Due to the common limitations associated with complex model organisms, we then summarize how yeast as a very simple model organism can help to gain valuable comprehensive information on general defence pathways cells exert in response to MG stress. Pioneering studies in additional rather simple eukaryotic model organisms suggest that many cellular reactions in response to MG are highly conserved throughout evolution.


Subject(s)
Adipocytes/metabolism , Diabetes Complications/metabolism , Insulin-Secreting Cells/metabolism , Mammals/metabolism , Oxidative Stress , Pyruvaldehyde/metabolism , Signal Transduction , Yeasts/metabolism , Animals , Humans
17.
Horm Metab Res ; 51(1): 69-75, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30396219

ABSTRACT

Radioiodine refractoriness in differentiated thyroid cancer remains an unsolved therapeutic problem. Response to retinoids might depend on specific genetic markers. In this retrospective analysis, associations between BRAF V600E and clinical outcomes after redifferentiation with retinoic acid (RA) and radioiodine therapy (RIT) were investigated. Thirteen patients with radioiodine-refractory (RAI-R) papillary thyroid cancer (PTC) were treated with 13-cis-RA followed by iodine-131 treatment at the Department of Endocrinology, Heidelberg University Hospital, Heidelberg, Germany. DNA sequencing was performed in formalin-fixed paraffin-embedded tissue. Clinical outcome parameters were tumor size, thyroglobulin, and radioiodine uptake in correlation to mutational status. Differences of each parameter were compared before and after RA/RIT. Initial response showed no difference in patients with BRAF V600E compared to patients with wild type. However, after a median follow-up of 2 and a half years, 2 out of 3 patients with BRAF V600E showed response compared to 5 out of 9 with wild type under consideration of all 3 parameters. In this small cohort, more RAI-R PTC patients with BRAF V600E receiving redifferentiation therapy showed response. Verification in a larger study population analyzing mutational status in patients with RAI-R PTC might be helpful to identify patients where redifferentiation therapy might lead to an improved outcome.


Subject(s)
Iodine Radioisotopes/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Thyroid Cancer, Papillary/drug therapy , Thyroid Cancer, Papillary/genetics , Tretinoin/therapeutic use , Adult , Aged , Cohort Studies , Female , Germany , Humans , Male , Middle Aged , Mutation, Missense , Proto-Oncogene Proteins B-raf/metabolism , Retrospective Studies , Thyroid Cancer, Papillary/metabolism
18.
Diabetes Res Clin Pract ; 146: 191-201, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30389624

ABSTRACT

AIMS: The aim of the study was to assess whether quantitative-sensory-testing could be used to evaluate prevalence and predictors of diabetic neuropathy (DPNP) in patients with pre-diabetes and type 2 diabetes. METHODS: Twenty-eight pre-diabetics and 108 patients with type 2 diabetes were evaluated using neuropathy-deficit-score (NDS), neuropathy-symptom-score (NSS), nerve-conduction-studies (NCS), short-QST-protocol to examine small fibers and the comprehensive QST-battery (long-QST) according to the German Research Network on Neuropathic Pain protocol. RESULTS: Long-QST revealed a DPNP-prevalence of 71% in pre-diabetics and 95% in patients with type 2 diabetes, while according to NDS it was only 11% and 63%, and NCS missed 58% of patients with DPNP. Small and medium fibers were similarly affected in both groups, while large fiber deficits were significantly more common in type 2 diabetes (p < 0.01). Complete loss of function in all fibers was significantly higher in patients with type 2 diabetes than in pre-diabetics (26% vs. 11%, p < 0.05). Hyperalgesia was slightly increased in pre-diabetes than in type 2 diabetes (57% vs. 43%, p = n.s.). However, NSS only showed significant associations with large fiber deficits. Logistic regression analyses revealed that age (OR 1.14[1.05/1.24]) and albuminuria (OR 12.8[1.52/107.3]) were independent predictors for the presence of DPNP. CONCLUSIONS: DPNP is much more prevalent in patients with pre-diabetes and type 2 diabetes and clinical routine tests may miss the majority of affected patients. Age and albuminuria, but not HbA1c, appear to be significantly associated with DPNP. CLINICAL TRIAL REGISTRATION: NCT03022721.


Subject(s)
Albuminuria/complications , Diabetes Mellitus, Type 2/complications , Diabetic Neuropathies/complications , Prediabetic State/complications , Diabetes Mellitus, Type 2/pathology , Female , Humans , Male , Middle Aged , Prediabetic State/pathology
19.
BMC Med Educ ; 18(1): 257, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30419869

ABSTRACT

BACKGROUND: Recent studies have shown that clinical tasks only represent a small percentage in the scope of final-year medical students' activities and often lack sufficient supervision. It appears that final-year medical students are frequently deployed to perform "routine tasks" and show deficits in the performance of more complex activities. This study aimed to evaluate final-year students' clinical performance in multiple impromptu clinical scenarios using video-based assessment. METHODS: We assessed final-year medical students' clinical performance in a prospective, descriptive, clinical follow-up study with 24 final-year medical students during their Internal Medicine rotation. Participating students were videotaped while practicing history taking, physical examination, IV cannulation, and case presentation at the beginning and end of their rotation. Clinical performance was rated by two independent, blinded video assessors using binary checklists, activity specific rating scales and a five-point global rating scale for clinical competence. RESULTS: Students' performance, assessed by the global rating scale for clinical competence, improved significantly during their rotation. However, their task performance was not rated as sufficient for independent practice in most cases. Analysis of average scores revealed that overall performance levels differed significantly, whereby average performance was better for less complex and more frequently performed activities. CONCLUSIONS: We were able to show that students' performance levels differ significantly depending on the frequency and complexity of activities. Hence, to ensure adequate job preparedness for clinical practice, students need sufficiently supervised and comprehensive on-ward medical training.


Subject(s)
Clinical Competence/standards , Education, Medical, Graduate , Internal Medicine/education , Students, Medical , Video Recording , Adult , Catheterization/standards , Checklist , Educational Measurement , Female , Follow-Up Studies , Formative Feedback , Humans , Internal Medicine/standards , Male , Medical History Taking/standards , Physical Examination/standards , Physician-Patient Relations , Prospective Studies , Young Adult
20.
Mol Metab ; 18: 143-152, 2018 12.
Article in English | MEDLINE | ID: mdl-30287091

ABSTRACT

OBJECTIVES: The deficit of Glyoxalase I (Glo1) and the subsequent increase in methylglyoxal (MG) has been reported to be one the five mechanisms by which hyperglycemia causes diabetic late complications. Aldo-keto reductases (AKR) have been shown to metabolize MG; however, the relative contribution of this superfamily to the detoxification of MG in vivo, particularly within the diabetic state, remains unknown. METHODS: CRISPR/Cas9-mediated genome editing was used to generate a Glo1 knock-out (Glo1-/-) mouse line. Streptozotocin was then applied to investigate metabolic changes under hyperglycemic conditions. RESULTS: Glo1-/- mice were viable and showed no elevated MG or MG-H1 levels under hyperglycemic conditions. It was subsequently found that the enzymatic efficiency of various oxidoreductases in the liver and kidney towards MG were increased in the Glo1-/- mice. The functional relevance of this was supported by the altered distribution of alternative detoxification products. Furthermore, it was shown that MG-dependent AKR activity is a potentially clinical relevant pathway in human patients suffering from diabetes. CONCLUSIONS: These data suggest that in the absence of GLO1, AKR can effectively compensate to prevent the accumulation of MG. The combination of metabolic, enzymatic, and genetic factors, therefore, may provide a better means of identifying patients who are at risk for the development of late complications caused by elevated levels of MG.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Pyruvaldehyde/metabolism , Aged , Aldo-Keto Reductases/metabolism , Animals , Female , Glycation End Products, Advanced/metabolism , Humans , Kidney/metabolism , Lactoylglutathione Lyase/genetics , Lactoylglutathione Lyase/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...