Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 8: 554984, 2020.
Article in English | MEDLINE | ID: mdl-33324630

ABSTRACT

The development of alternatives for autologous bone grafts is a major focus of bone tissue engineering. To produce living bone-forming implants, skeletal stem and progenitor cells (SSPCs) are envisioned as key ingredients. SSPCs can be obtained from different tissues including bone marrow, adipose tissue, dental pulp, and periosteum. Human periosteum-derived cells (hPDCs) exhibit progenitor cell characteristics and have well-documented in vivo bone formation potency. Here, we have characterized and compared hPDCs derived from tibia with craniofacial hPDCs, from maxilla and mandible, respectively, each representing a potential source for cell-based tissue engineered implants for craniofacial applications. Maxilla and mandible-derived hPDCs display similar growth curves as tibial hPDCs, with equal trilineage differentiation potential toward chondrogenic, osteogenic, and adipogenic cells. These craniofacial hPDCs are positive for SSPC-markers CD73, CD164, and Podoplanin (PDPN), and negative for CD146, hematopoietic and endothelial lineage markers. Bulk RNA-sequencing identified genes that are differentially expressed between the three sources of hPDC. In particular, differential expression was found for genes of the HOX and DLX family, for SOX9 and genes involved in skeletal system development. The in vivo bone formation, 8 weeks after ectopic implantation in nude mice, was observed in constructs seeded with tibial and mandibular hPDCs. Taken together, we provide evidence that hPDCs show different profiles and properties according to their anatomical origin, and that craniofacial hPDCs are potential sources for cell-based bone tissue engineering strategies. The mandible-derived hPDCs display - both in vitro and in vivo - chondrogenic and osteogenic differentiation potential, which supports their future testing for use in craniofacial bone regeneration applications.

2.
J Craniomaxillofac Surg ; 43(2): 214-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25523397

ABSTRACT

BACKGROUND: Radiation therapy (RT) as part head and neck cancer treatment often leads to irradiation of surrounding normal tissue, such as mandibular bone. A reduced reparative capacity of the bone can lead to osteoradionecrosis (ORN). Hyperbaric oxygen therapy (HBOT) is used to treat ORN, based on its potential to raise the oxygen tension in tissues. However, prevention of radiation-induced damage is of great interest. Our purpose was to investigate whether HBOT could prevent radiation-induced damage to murine mandibles. METHODS: Twenty-eight mice were irradiated in the head and neck region with a single dose (15 Gy) and half of them were subsequently subjected to HBOT. Another 14 mice did not receive any treatment and served as controls. Ten and 24 weeks after RT, mandibles were harvested and analysed histologically and by microcomputed tomography (micro-CT). RESULTS: Micro-CT analysis showed a reduction in relative bone volume by RT, which was partly recovered by HBOT. Trabecular thickness and separation were also positively influenced by HBOT. Morphologically, HBOT suppressed the osteoclast number, indicating decreased resorption, and decreased the amount of lacunae devoid of osteocytes, indicating increased bone viability. CONCLUSIONS: HBOT was able to partly reduce radiation-induced effects on microarchitectural parameters, resorption, and bone viability in mouse mandibles. HBOT could therefore potentially play a role in the prevention of radiation-induced damage to human mandibular bone.


Subject(s)
Hyperbaric Oxygenation/methods , Mandibular Diseases/prevention & control , Osteoradionecrosis/prevention & control , Radiation Injuries, Experimental/prevention & control , Animals , Bone Resorption/prevention & control , Cell Count , Female , Mandible/pathology , Mandible/radiation effects , Mice , Mice, Inbred C3H , Organ Size/radiation effects , Osteoclasts/pathology , Osteoclasts/radiation effects , Osteocytes/pathology , Osteocytes/radiation effects , Osteogenesis/radiation effects , Radiotherapy Dosage , Time Factors , Tissue Survival/radiation effects , X-Ray Microtomography/methods
3.
Article in English | MEDLINE | ID: mdl-25229057

ABSTRACT

BACKGROUND: Treatment of large bone defects due to trauma, tumor resection, or congenital abnormalities is challenging. Bone tissue engineering using mesenchymal stem cells (MSCs) represents a promising treatment option. However, the quantity and quality of engineered bone tissue are not sufficient to fill large bone defects. The aim of this study was to determine if the addition of enamel matrix derivative (EMD) improves in vitro chondrogenic priming of MSCs to ultimately improve in vivo MSC mediated endochondral bone formation. METHODS: MSCs were chondrogenically differentiated in 2.0 × 10(5) cell pellets in medium supplemented with TGFß3 in the absence or presence of 1, 10, or 100 µg/mL EMD. Samples were analyzed for gene expression of RUNX2, Col II, Col X, and Sox9. Protein and glycoaminoglycan (GAG) production were also investigated via DMB assays, histology, and immunohistochemistry. Osteogenic and adipogenic differentiation capacity were also assessed. RESULTS: The addition of EMD did not negatively affect chondrogenic differentiation of adult human MSCs. EMD did not appear to alter GAG production or expression of chondrogenic genes. Osteogenic and adipogenic differentiation were also unaffected though a trend toward decreased adipogenic gene expression was observed. CONCLUSION: EMD does not affect chondrogenic differentiation of adult human MSCs. As such the use of EMD in combination with chondrogenically primed MSCs for periodontal bone tissue repair is unlikely to have negative effects on MSC differentiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...