Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 57(12): 2973-2980, 2018 Apr 20.
Article in English | MEDLINE | ID: mdl-29714325

ABSTRACT

Meta-lenses based on flat optics enabled a fundamental shift in lens production-providing an easier manufacturing process with an increase in lens profile precision and a reduction in size and weight. Here we present an analytical approach to correct spherical aberrations caused by light propagation through the substrate by adding a substrate-corrected phase profile, which differs from the original hyperbolic one. A meta-lens encoding the new phase profile would yield diffraction-limited focusing and an increase of up to 0.3 of its numerical aperture without changing the radius or focal length. In tightly focused laser spot applications such as direct laser lithography and laser printing, a substrate-corrected meta-lens can reduce the spatial footprint of the meta-lens.

2.
Sci Rep ; 8(1): 7240, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29740171

ABSTRACT

We present here a compact metasurface lens element that enables simultaneous and spatially separated imaging of light of opposite circular polarization states. The design overcomes a limitation of previous chiral lenses reliant on the traditional geometric phase approach by allowing for independent focusing of both circular polarizations without a 50% efficiency trade-off. We demonstrate circular polarization-dependent imaging at visible wavelengths with polarization contrast greater than 20dB and efficiencies as high as 70%.

3.
Nano Lett ; 17(8): 4902-4907, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28661676

ABSTRACT

Recently, developments in meta-surfaces have allowed for the possibility of a fundamental shift in lens manufacturing-from the century-old grinding technology to nanofabrication-opening a way toward mass producible high-end meta-lenses. Inspired by early camera lenses and to overcome the aberrations of planar single-layered meta-lenses, we demonstrate a compact meta-lens doublet by patterning two metasurfaces on both sides of a substrate. This meta-lens doublet has a numerical aperture of 0.44, a focal length of 342.5 µm, and a field of view of 50° that enables diffraction-limited monochromatic imaging along the focal plane at a wavelength of 532 nm. The compact design has various imaging applications in microscopy, machine vision, and computer vision.

4.
Phys Rev Lett ; 118(11): 113901, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28368630

ABSTRACT

We present a method allowing for the imposition of two independent and arbitrary phase profiles on any pair of orthogonal states of polarization-linear, circular, or elliptical-relying only on simple, linearly birefringent wave plate elements arranged into metasurfaces. This stands in contrast to previous designs which could only address orthogonal linear, and to a limited extent, circular polarizations. Using this approach, we demonstrate chiral holograms characterized by fully independent far fields for each circular polarization and elliptical polarization beam splitters, both in the visible. This approach significantly expands the scope of metasurface polarization optics.

SELECTION OF CITATIONS
SEARCH DETAIL
...