Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Environ Assess Manag ; 15(6): 974-987, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31218828

ABSTRACT

A large water quality data set, representing more than 100 surface-water locations sampled from 2007 to 2017 in the Los Alamos area of New Mexico, USA's Pajarito Plateau, was assembled to evaluate Al concentrations in unfiltered and filtered samples. Aluminum concentrations often exceeded United States Environmental Protection Agency (USEPA) and New Mexico ambient water quality criteria (AWQC), regardless of filter size and sample location. However, AWQC are based on laboratory toxicity studies using soluble Al salts and do not reflect natural conditions in Pajarito Plateau surface waters. The plateau is predominately covered by glassy and recrystallized volcanic ashes (e.g., Bandelier Tuff) containing colloidal to sand-sized aluminosilicates. Samples from natural background drainages and areas downstream of developed regions exhibited similar Al concentrations, suggesting that AWQC exceedances are caused by naturally elevated Al concentrations. Solubility calculations indicated that most samples were oversaturated with respect to amorphous Al(OH)3 (s). Therefore, AWQC exceedances are likely artifacts of the "total recoverable" sample preparation, which includes acidification and partial digestion, thereby liberating nonbioavailable Al from aluminosilicates. Accordingly, Al concentrations were strongly associated with suspended sediment concentrations (SSCs), implying that aluminosilicates in suspended sediment contributed to AWQC exceedances and Al oversaturation. Solid-phase particle characterization, using X-ray diffraction (XRD) and scanning electron microscopy with electron dispersive spectroscopy (SEM/EDS) did not identify potentially bioavailable amorphous Al(OH)3 (s) in any sample tested. Thus, current sample collection and analysis protocols should not be used to evaluate attainment of Al AWQC on the Pajarito Plateau or locations where aluminosilicates are substantial contributors to total recoverable Al. A sample preparation method (e.g., pH 4 extraction) capable of differentiating nonbioavailable and bioavailable forms of Al is recommended. Otherwise, current New Mexico and USEPA sample preparation approaches will continue to generate artifactual AWQC exceedances in surface waters that contain aluminosilicates. Integr Environ Assess Manag 2019;00:1-14. © 2019 SETAC.


Subject(s)
Aluminum Compounds/analysis , Aluminum/analysis , Environmental Monitoring/methods , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Quality/standards , New Mexico
SELECTION OF CITATIONS
SEARCH DETAIL
...