Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 381(2244): 20220032, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36774959

ABSTRACT

The buckling response of axially compressed cylindrical shells is well known for its imperfection sensitivity. Mapping out a stability landscape by localized probing has recently been proposed as a rational means for establishing shell buckling knockdown factors. Probing using a point force directed radially inwards and perpendicular to the cylinder wall is based on the insight that a localized single dimple exists as an edge state in the basin boundary of the stable prebuckling equilibrium. Here, we extend the idea of probing to bi-directional inwards and outwards forces to trigger both single-dimple and double-dimple edge states. We identify key features of the ensuing probing stability landscape and generalize these to derive three design curves of varying conservatism that are a function of the non-dimensional Batdorf parameter only. Interestingly, the most conservative of the three knockdown curves bounds a large dataset of experimental buckling results from below, despite being derived from probing features of geometrically perfect cylinders. Overall, the three design curves permit a more nuanced design approach than legacy knockdown factors, as different levels of conservatism can be chosen based on expected manufacturing quality. For instance, the most and least conservative of the three design guidelines differ by a factor of 3 for the most slender cylinder geometries, and the associated reduction in safety factor has profound implications for efficient structural design. This article is part of the theme issue 'Probing and dynamics of shock sensitive shells'.

2.
Philos Trans A Math Phys Eng Sci ; 381(2244): 20220034, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36774960

ABSTRACT

The capabilities of the rapid tow shearing (RTS) process are explored to reduce the well-known imperfection sensitivity of axially compressed cylindrical shells. RTS deposits curvilinear carbon fibre tapes with a fibre-angle-thickness coupling that enables the in situ manufacturing of embedded rings and stringers. By blending the material's elastic modulus and wall thickness smoothly across the cylindrical surface, the load paths can be redistributed favourably with a minimal-design approach that contains part count and weight while ameliorating imperfection sensitivity. A genetic algorithm that incorporates realistic manufacturing imperfections and axial stiffness penalty is used to maximize the 99.9% reliability load of straight fibre (SF) and RTS cylinders. The axial stiffness penalty ensures that reliability does not come at the expense of stiffness. The first-order second-moment method is used to calculate statistical moments that enable an estimate of the 99.9% reliability load. Due to the fibre-angle-thickness coupling of RTS, buckling data are normalized by mass and thickness. Compared to a quasi-isotropic laminate, which corresponds to the optimal eight-layer design for a perfect cylinder, the optimized SF and RTS laminates have a 6% and 8% greater 99.9% normalized reliability load. By relaxing the axial stiffness penalty, the performance benefit can be increased such that SF and RTS cylinders exceed the 99.9% normalized reliability load of an eight-layer quasi-isotropic laminate by 23% and 37%, respectively. Both improvements (with and without penalty functions) stem largely from a reduction in the variance of the buckling-load distribution, thereby demonstrating the potential of fibre-steered cylinders in reducing the imperfection sensitivity of cylindrical shells. This article is part of the theme issue 'Probing and dynamics of shock sensitive shells'.

3.
Proc Math Phys Eng Sci ; 476(2241): 20200273, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33061790

ABSTRACT

Numerical results for the axially compressed cylindrical shell demonstrate the post-buckling response snaking in both the applied load and corresponding end-shortening. Fluctuations in load, associated with progressive axial formation of circumferential rings of dimples, are well known. Snaking in end-shortening, describing the evolution from a single dimple into the first complete ring of dimples, is a recent discovery. To uncover the mechanics behind these different phenomena, simple finite degree-of-freedom cellular models are introduced, based on hierarchical arrangements of simple unit cells with snapback characteristics. The analyses indicate two fundamentally different variants to this new form of snaking. Each cell has its own Maxwell displacement, which are either separated or overlap. In the presence of energetic background disturbance, the differences between these two situations can be crucial. If the Maxwell displacements of individual cells are separated, then buckling is likely to occur sequentially, with the system able to settle into different localized states in turn. Yet if Maxwell displacements overlap, then a global buckling pattern triggers immediately as a dynamic domino effect. We use the term Maxwell tipping point to identify the point of switching between these two behaviours.

4.
Proc Math Phys Eng Sci ; 475(2224): 20190006, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31105461

ABSTRACT

The collapse of axially compressed cylinders by buckling instability is a classic problem in engineering mechanics. We revisit the problem by considering fully localized post-buckling states in the form of one or multiple dimples. Using nonlinear finite-element methods and numerical continuation algorithms, we trace the evolution of odd and even dimples into one axially localized ring of circumferentially periodic diamond-shaped waves. The growth of the post-buckling pattern with varying compression is driven by homoclinic snaking with even- and odd-dimple solutions intertwined. When the axially localized ring of diamond-shaped buckles destabilizes, additional circumferential snaking sequences ensue that lead to the Yoshimura buckling pattern. The unstable single-dimple state is a mountain-pass point in the energy landscape and therefore forms the smallest energy barrier between the pre-buckling and post-buckling regimes. The small energy barrier associated with the mountain-pass point means that the compressed, pre-buckled cylinder is exceedingly sensitive to perturbations once the mountain-pass point exists. We parameterize the compressive onset of the single-dimple mountain-pass point with a single non-dimensional parameter, and compare the lower-bound buckling load suggested by this parameter with over 100 experimental data points from the literature. Good correlation suggests that the derived knockdown factor provides a less conservative design load than NASA's SP-8007 guideline.

5.
Comput Methods Appl Mech Eng ; 320: 369-395, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-33479550

ABSTRACT

Laminated composites are prone to delamination failure due to the lack of reinforcement through the thickness. Therefore, during the design process the initiation and propagation of delaminations should be accounted for as early as possible. This paper presents computationally efficient nine degree-of-freedom (dof) and eight-dof shear locking-free beam elements using the mixed form of the refined zigzag theory (RZT(m)). The corresponding nine-dof and eight-dof elements use the anisoparametric and constrained anisoparametric interpolation schemes, respectively, to eliminate shear locking in slender beams. The advantage of the present element over previous RZT beam elements is that no post-processing is required to accurately model the transverse shear stress while maintaining the computational efficiency of a low-order beam element. Comparisons with high-fidelity finite element models and three-dimensional elasticity solutions show that the elements can robustly and accurately predict the displacement field, axial stress and transverse shear stress through the thickness of a sandwich beam or a composite laminate with an embedded delamination. In fact, the accuracy and computational efficiency of predicting stresses in laminates with embedded delaminations make the present elements attractive choices for RZT-based delamination initiation and propagation methodologies available in the literature.

6.
Proc Math Phys Eng Sci ; 472(2194): 20160391, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27843401

ABSTRACT

The safe design of primary load-bearing structures requires accurate prediction of stresses, especially in the vicinity of geometric discontinuities where deleterious three-dimensional stress fields can be induced. Even for thin-walled structures significant through-thickness stresses arise at edges and boundaries, and this is especially precarious for laminates of advanced fibre-reinforced composites because through-thickness stresses are the predominant drivers in delamination failure. Here, we use a higher-order equivalent single-layer model derived from the Hellinger-Reissner mixed variational principle to examine boundary layer effects in laminated plates comprising constant-stiffness and variable-stiffness laminae and deforming statically in cylindrical bending. The results show that zigzag deformations, which arise due to layerwise differences in the transverse shear moduli, drive boundary layers towards clamped edges and are therefore critically important in quantifying localized stress gradients. The relative significance of the boundary layer scales with the degree of layerwise anisotropy and the thickness to characteristic length ratio. Finally, we demonstrate that the phenomenon of alternating positive and negative transverse shearing deformation through the thickness of composite laminates, previously only observed at clamped boundaries, can also occur at other locations as a result of smoothly varying the material properties over the in-plane dimensions of the laminate.

SELECTION OF CITATIONS
SEARCH DETAIL
...