Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(2)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38189617

ABSTRACT

We explore theoretically the effects of external potentials on the spatial distribution of particle properties in a liquid of explicitly responsive macromolecules. In particular, we focus on the bistable particle size as a coarse-grained internal degree of freedom (DoF, or "property"), σ, that moves in a bimodal energy landscape, in order to model the response of a state-switching (big-to-small) macromolecular liquid to external stimuli. We employ a mean-field density functional theory (DFT) that provides the full inhomogeneous equilibrium distributions of a one-component model system of responsive colloids (RCs) interacting with a Gaussian pair potential. For systems confined between two parallel hard walls, we observe and rationalize a significant localization of the big particle state close to the walls, with pressures described by an exact RC wall theorem. Application of more complex external potentials, such as linear (gravitational), osmotic, and Hamaker potentials, promotes even stronger particle size segregation, in which macromolecules of different size are localized in different spatial regions. Importantly, we demonstrate how the degree of responsiveness of the particle size and its coupling to the external potential tune the position-dependent size distribution. The DFT predictions are corroborated by Brownian dynamics simulations. Our study highlights the fact that particle responsiveness can be used to localize liquid properties and therefore helps to control the property- and position-dependent function of macromolecules, e.g., in biomedical applications.

2.
Phys Chem Chem Phys ; 23(27): 14770-14782, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34196342

ABSTRACT

The hydroxylation state of an oxide surface is a central property of its solid/liquid interface and its corresponding electrical double layer. This study integrated both a reactive force field (ReaxFF) and a non-reactive potential into a hierarchical framework within molecular dynamics (MD) simulations to reveal how the hydroxylation state of the (110)-rutile TiO2 surface affects the electrical double layer properties. The simulation results obtained in the ReaxFF framework have shown that, while water dissociation occurs only at the under-coordinated Ti5c sites on the pristine TiO2 surface, the presence of point defects on the surface facilitates water dissociation at the oxygen vacancy sites, leading to two protonated oxygen bridge atoms for each vacancy site. As a consequence of enhanced water dissociation at the vacancy sites, water dissociation is quenched at the under-coordinated Ti5c sites resulting in two competitive hydroxylation mechanisms on the (110)-TiO2 surface. Using non-reactive MD simulations with hydroxylation states derived from the ReaxFF analysis, we demonstrate that water dissociation at the vacancy sites is a central mechanism governing the structuring of water near the interface. While the structuring of water near the interface is the main contribution to the electric field, water dissociation at the vacancy site enhances the adsorption of the electrolyte ions at the interface. The adsorbed ions lead to an increase of the effective surface charge as well as surface (zeta) potentials which are in the range of experimental observations. Our work provides a hierarchical multiscale simulation approach, covering a series of results with in-depth discussion for atomic/molecular level understanding of water dissociation and its effect on electric double layer properties of TiO2 to advance water splitting.

3.
J Mech Behav Biomed Mater ; 42: 88-99, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25460929

ABSTRACT

Interatomic potentials for pure Ca and the Mg-Ca binary have been developed in the framework of the second nearest-neighbors modified embedded-atom method (MEAM). The validity and the transferability of the Ca MEAM potential was performed by calculating physical, mechanical, and thermal properties. These properties were compared to experimental data and numerical data obtained from existing Ca potentials, and a good agreement was found. In addition, the dissociation of the edge dislocation into two Shockley partials aligns with the linear elasticity solution. Furthermore, the velocity of an edge dislocation under static and dynamics loading conditions predicted in Ca using the MEAM formalism reproduces the expected behavior of an edge dislocation in fcc crystal structures. The Ca MEAM potential was then coupled to an existing Mg MEAM potential to describe the properties of the Mg-Ca alloys. Heat of formation, structural energy difference, and elastic constants were calculated for several ordered Mg-Ca compounds containing different concentrations of Ca. As expected from first-principle calculations based on DFT, Mg2Ca with the Laves phase C14 was found to be the most stable structure with the lowest heat of formation compared to compounds with other Ca concentrations (Mg3Ca, MgCa, and MgCa3). Moreover, the mechanical stability was recovered for the different tested compounds and is in agreement with first-principle data.


Subject(s)
Alloys/chemistry , Calcium/chemistry , Magnesium/chemistry , Mechanical Phenomena , Temperature , Elasticity
SELECTION OF CITATIONS
SEARCH DETAIL
...