Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 86(1): 66-79, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35838283

ABSTRACT

This study aimed to assess the effect of carbohydrates on protein hydrolysis and potential implications for the design of anaerobic reactors for treatment of protein-rich wastewaters. Batch experiments were carried out with dissolved starch (Sta) and gelatine (Gel) at different chemical oxygen demand (COD) ratios ranging from 0 to 5.5 under methanogenic conditions for methane production and up to 3.8 under non-methanogenic conditions for volatile fatty acids (VFA), both at 35 °C. The Sta/Gel did not have a direct effect on the gelatine hydrolysis rate constants under methanogenic (0.51 ± 0.05 L g VSS-1 day-1) and non-methanogenic conditions (0.48 ± 0.05 L g VSS-1 day-1). However, under non-methanogenic conditions, gelatine hydrolysis was inhibited by 64% when a spectrum of VFA was added at a VFA/Gel (COD) ratio of 5.9. This was not caused by the ionic strength exerted by VFA but by the VFA itself. These results imply that methanogenesis dictates the reactor design for methane production but hydrolysis does for VFA production from wastewater proteins.


Subject(s)
Bioreactors , Methane , Anaerobiosis , Carbohydrates , Fatty Acids, Volatile/metabolism , Hydrolysis , Methane/metabolism , Wastewater
2.
Biotechnol Biofuels ; 12: 254, 2019.
Article in English | MEDLINE | ID: mdl-31673289

ABSTRACT

BACKGROUND: Many kinds of wastewaters contain appreciable quantities of protein. Anaerobic processes are suitable for the treatment of wastewater high in organics to achieve pollution control and recovery of energy as methane and hydrogen, or intermediates for production of biofuels and valuable biochemicals. A distinction between protein hydrolysis and amino acid fermentation, especially for dissolved proteins, is needed to target which one is truly rate-limiting and to effectively harvest bioproducts during anaerobic conversion of these wastewaters. This study explored mesophilic anaerobic hydrolysis and amino acid fermentation of gelatine, as a model for dissolved proteins, at pH 7 and at pH 5. RESULTS: The results showed that at pH 7, protein hydrolysis (first-order rate of 0.15 h-1) was approximately 5 times faster than acidification of the hydrolysis products (first-order rate of 0.03 h-1), implying that not hydrolysis but acidification was the rate-limiting step in anaerobic dissolved protein degradation. This was confirmed by (temporary) accumulation of amino acids. Nineteen different amino acids were detected during the first 8 incubation hours of gelatine at neutral pH and the total chemical oxygen demand (COD) of these 19 amino acids was up to approximately 40% of the COD of the gelatine that was added. Protein hydrolysis at pH 5 was 2-25 times slower than at pH 7. Shifting the initial pH from neutral to acidic conditions (pH 5) inhibited protein degradation and changed the volatile fatty acids (VFA) product profile. Furthermore, the presence or absence of methanogenic activity did not affect the rates of protein hydrolysis and acidification. CONCLUSIONS: The findings in this study can help to set a suitable solid retention time to accomplish anaerobic degradation of protein-rich wastewaters in continuous reactor systems. For example, if the target is harvesting VFAs, methanogens can be washed-out for a shorter retention time while amino acid fermentation, instead of hydrolysis as assumed previously, will govern the design and solutions to improve the system dealing with dissolved proteins.

3.
Water Res ; 138: 47-55, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29573628

ABSTRACT

Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback water was characterised by high chemical oxygen demand and DOC. Low molecular weight (LMW) acids and neutral compounds were the most abundant organic fractions, corresponding to 47% and 35% of DOC respectively. Ozonation did not change distribution of organic carbon fractions and concentrations of detected individual organic compounds significantly. Sorption to activated carbon targeted removal of individual organic compounds with molecular weight >115 Da, whereas LMW compounds remained largely unaffected. Aerobic degradation was responsible for removal of LMW compounds and partial ammonium removal, whereas formation of intermediates with molecular weight of 200-350 Da was observed. Combination of aerobic degradation for LMW organics removal with adsorption to activated carbon for removal of non-biodegradable organics is proposed to be implemented between pre-treatment (dissolved air floatation) and desalination (thermal or membrane desalination) steps.


Subject(s)
Natural Gas , Organic Chemicals/chemistry , Organic Chemicals/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Adsorption , Carbon/chemistry , Charcoal/chemistry , Ozone/chemistry , Wastewater/chemistry
4.
Mar Pollut Bull ; 104(1-2): 294-302, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26781957

ABSTRACT

Unusually large amounts of marine snow, including Extracellular Polymeric Substances (EPS), were formed during the 2010 Deepwater Horizon oil spill. The marine snow settled with oil and clay minerals as an oily sludge layer on the deep sea floor. This study tested the hypothesis that the unprecedented amount of chemical dispersants applied during high phytoplankton densities in the Gulf of Mexico induced high EPS formation. Two marine phytoplankton species (Dunaliella tertiolecta and Phaeodactylum tricornutum) produced EPS within days when exposed to the dispersant Corexit 9500. Phytoplankton-associated bacteria were shown to be responsible for the formation. The EPS consisted of proteins and to lesser extent polysaccharides. This study reveals an unexpected consequence of the presence of phytoplankton. This emphasizes the need to test the action of dispersants under realistic field conditions, which may seriously alter the fate of oil in the environment via increased marine snow formation.


Subject(s)
Bacteria/metabolism , Petroleum Pollution , Phytoplankton/metabolism , Surface-Active Agents/metabolism , Water Pollutants, Chemical/metabolism , Environmental Monitoring , Lipids , Mexico
5.
Bioresour Technol ; 96(15): 1683-9, 2005 Oct.
Article in English | MEDLINE | ID: mdl-15935653

ABSTRACT

The feasibility of activated carbon post-treatment of (biologically treated) wastewater from the paper and board industry was investigated, the goal being to remove refractory organic pollutants and produce water that can be re-used in the production process. Because closing water-circuits in the paper and board industry results in higher water temperatures, the effect of the temperature on activated carbon treatment was also investigated. Batch and column adsorption tests showed that activated carbon provides an excellent removal of cationic demand and color related compounds, the two most important representatives of organic compounds that have to be removed. Unexpectedly, higher water temperatures enhanced the performance of activated carbon. However, the treatment costs, mainly determined by transport and regeneration of the carbon, were very high. At long contact times between the wastewater and the carbon the occurrence of biodegradation was observed. Biological regeneration of the carbon may therefore provide a means to reduce the treatment costs, but a practical application requires further research.


Subject(s)
Charcoal/chemistry , Paper , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Biodegradation, Environmental , Charcoal/metabolism , Spectrophotometry , Temperature , Water Pollutants, Chemical/metabolism
6.
J Agric Food Chem ; 50(15): 4282-9, 2002 Jul 17.
Article in English | MEDLINE | ID: mdl-12105959

ABSTRACT

In this paper the determination of the physical/rheological characteristics is described for a series of commercial galactomannans of which the structural details have been reported previously. Both solubility of the galactomannans and rheological properties of galactomannan solutions and galactomannan/xanthan mixtures were determined. Using a statistical analysis approach an attempt was undertaken to recognize correlations between structural and rheological data. The best correlation found was between the abundance of galactose substituents at a regular distance (type of galactomannan) and the storage modulus (G') of mixed galactomannan/xanthan gels, underscoring the hypothesis that branching hinders the formation of a network with xanthan gum. Also, the G' for the group of locust bean gums correlated with the degree of blockiness, that is, the size and occurrence of nonsubstituted regions on the mannose backbone. In addition, galactomannans displayed an apparent decrease in gelling ability with increasing average molecular weight. That G' also relates to the type of galactomannan can therefore partly be attributed to differences in average molecular weight for the various galactomannan types. However, within the series of locust bean gums tested, also an increase of G' with molecular weight was observed. This can be explained by the decreasing number of loose ends of the polymers and the concomitant increasing efficiency in network participation with increasing molecular weight.


Subject(s)
Mannans/chemistry , Chemical Phenomena , Chemistry, Physical , Galactose/chemistry , Molecular Weight , Polysaccharides, Bacterial , Rheology , Solubility , Solutions , Structure-Activity Relationship , Viscosity
7.
J Colloid Interface Sci ; 254(1): 175-83, 2002 Oct 01.
Article in English | MEDLINE | ID: mdl-12702439

ABSTRACT

A series of proteins was studied with respect to their ability to form a network at the air/water interface and their suitability as foaming agents and foam stabilizers. Proteins were chosen with a range of structures from flexible to rigid/globular: beta-casein, beta-lactoglobulin, ovalbumin, and (soy) glycinin. Experiments were performed at neutral pH except for glycinin, which was studied at both pH 3 and pH 6.7. The adsorption process was followed with an automated drop tensiometer (ADT). Network forming properties were assessed in terms of surface dilational modulus (determined with the ADT), the critical falling film length (L(still)) and flow rate (Q(still)) below which a stagnant film exists (as measured with the overflowing cylinder technique), and the fracture stress and fracture strain measured in surface shear. It was found that glycinin (pH 3) can form an interfacial gel in a very short time, whereas beta-casein has very poor network-forming properties. Hardly any foam could be produced at the chosen conditions with glycinin (pH 6.7) and with ovalbumin, whereas beta-casein, beta-lactoglobulin, and glycinin (pH 3) were good foaming agents. It seems that adsorption and unfolding rate are most important for foam formation. Once the foam is formed, a rigid network might favor stabilizing the foam.


Subject(s)
Air , Excipients/chemistry , Proteins/chemistry , Water/chemistry , Adsorption , Rheology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...