Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Am J Hum Genet ; 109(5): 953-960, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35460607

ABSTRACT

We report an autosomal recessive, multi-organ tumor predisposition syndrome, caused by bi-allelic loss-of-function germline variants in the base excision repair (BER) gene MBD4. We identified five individuals with bi-allelic MBD4 variants within four families and these individuals had a personal and/or family history of adenomatous colorectal polyposis, acute myeloid leukemia, and uveal melanoma. MBD4 encodes a glycosylase involved in repair of G:T mismatches resulting from deamination of 5'-methylcytosine. The colorectal adenomas from MBD4-deficient individuals showed a mutator phenotype attributable to mutational signature SBS1, consistent with the function of MBD4. MBD4-deficient polyps harbored somatic mutations in similar driver genes to sporadic colorectal tumors, although AMER1 mutations were more common and KRAS mutations less frequent. Our findings expand the role of BER deficiencies in tumor predisposition. Inclusion of MBD4 in genetic testing for polyposis and multi-tumor phenotypes is warranted to improve disease management.


Subject(s)
Adenomatous Polyposis Coli , Colorectal Neoplasms , Uveal Neoplasms , Adenomatous Polyposis Coli/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Endodeoxyribonucleases/genetics , Genetic Predisposition to Disease , Germ Cells/pathology , Germ-Line Mutation/genetics , Humans , Uveal Neoplasms/genetics
3.
Sci Rep ; 9(1): 9814, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31285513

ABSTRACT

Attenuated adenomatous polyposis (AAP) is a heterogeneous syndrome in terms of clinical manifestations, heritability and etiology of the disease. Genetic heterogeneity and low penetrance alleles are probably the best explanation for this variability. Certainly, it is known that APC and MUTYH are high penetrance predisposition genes for adenomatous polyposis, but they only account for 5-10% of AAP. Other new predisposition genes, such as POLE, POLD1, NTHL1, AXIN2 or MSH3, have been recently described and have been associated with AAP, but their relative contribution is still not well defined. In order to evaluate the genetic predisposition to AAP in a hospital based population, germline DNAs from 158 AAP subjects were screened for genetic variants in the coding regions and intron-exon boundaries of seven associated genes through a next-generation sequencing (NGS) custom gene panel. Splicing, segregation studies, somatic mutational screening and RNA quantitative expression assays were conducted for selected variants. In four of the probands the adenoma susceptibility could be explained by actionable mutations in APC or MUTYH, and one other patient was a double carrier of two truncating variants in both POLE and NTHL1. Furthermore, 16 additional patients harbored uncertain significance variants in the remaining tested genes. This report gives information about the contribution of the newly described adenomatous polyposis predisposition genes in a Spanish attenuated polyposis cohort. Our results highly support the convenience of NGS multigene panels for attenuated polyposis genetic screening and reveals POLE frameshift variants as a plausible susceptibility mechanism for AAP.


Subject(s)
Adenomatous Polyposis Coli/genetics , DNA Mutational Analysis/methods , Gene Expression Profiling/methods , Gene Regulatory Networks , Germ-Line Mutation , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Pedigree , Penetrance , Sequence Analysis, DNA , Sequence Analysis, RNA , Spain
4.
Life Sci Alliance ; 2(3)2019 06.
Article in English | MEDLINE | ID: mdl-31126994

ABSTRACT

Animals need to adjust many cellular functions to oxygen availability to adapt to changing environmental conditions. We have used the nematode Caenorhabditis elegans as a model to investigate how variations in oxygen concentrations affect cell fate specification during development. Here, we show that several processes controlled by the conserved RTK/RAS/MAPK pathway are sensitive to changes in the atmospheric oxygen concentration. In the vulval precursor cells (VPCs), the hypoxia-inducible factor HIF-1 activates the expression of the nuclear hormone receptor NHR-57 to counteract RAS/MAPK-induced differentiation. Furthermore, cross-talk between the NOTCH and hypoxia-response pathways modulates the capability of the VPCs to respond to RAS/MAPK signaling. Lateral NOTCH signaling positively regulates the prolyl hydroxylase EGL-9, which promotes HIF-1 degradation in uncommitted VPCs and permits RAS/MAPK-induced differentiation. By inducing DELTA family NOTCH ligands, RAS/MAPK signaling creates a positive feedback loop that represses HIF-1 and NHR-57 expression in the proximal VPCs and keeps them capable of differentiating. This regulatory network formed by the NOTCH, hypoxia, and RAS/MAPK pathways may allow the animals to adapt developmental processes to variations in oxygen concentration.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Hypoxia/metabolism , Mitogen-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction , Alternative Splicing , Animals , Biomarkers , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Gain of Function Mutation , Gene Expression Regulation , Models, Biological , Phenotype , Protein Binding , Proto-Oncogene Proteins p21(ras)/genetics , Receptors, Notch/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Mol Aspects Med ; 69: 62-72, 2019 10.
Article in English | MEDLINE | ID: mdl-31108140

ABSTRACT

The somatic mutation spectrum imprinted in the genome of a tumor represents the mutational processes that have been active in that tumor. Large sequencing efforts in various cancer types have resulted in the identification of multiple mutational signatures, of which several have been linked to specific biological mechanisms. Several pan-cancer mutational signatures have been identified, while other signatures are only found in specific tissue types. Research on tumors from individuals with specific DNA repair defects has led to links between specific mutational signatures and mutational processes. Studying mutational signatures in cancers that are likely the result of a genetic predisposition may represent an interesting strategy to identify constitutional DNA repair defects, including those underlying polyposis and colorectal cancer.


Subject(s)
Adenomatous Polyposis Coli/genetics , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Mutation , Adenomatous Polyposis Coli/diagnosis , Aging/genetics , Colorectal Neoplasms/diagnosis , DNA Repair , Genetic Association Studies , Germ-Line Mutation , Humans , Mutagens , Organ Specificity/genetics
6.
Cancer Cell ; 35(2): 256-266.e5, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30753826

ABSTRACT

Biallelic germline mutations affecting NTHL1 predispose carriers to adenomatous polyposis and colorectal cancer, but the complete phenotype is unknown. We describe 29 individuals carrying biallelic germline NTHL1 mutations from 17 families, of which 26 developed one (n = 10) or multiple (n = 16) malignancies in 14 different tissues. An unexpected high breast cancer incidence was observed in female carriers (60%). Mutational signature analysis of 14 tumors from 7 organs revealed that NTHL1 deficiency underlies the main mutational process in all but one of the tumors (93%). These results reveal NTHL1 as a multi-tumor predisposition gene with a high lifetime risk for extracolonic cancers and a typical mutational signature observed across tumor types, which can assist in the recognition of this syndrome.


Subject(s)
Biomarkers, Tumor/genetics , DNA Mutational Analysis , Deoxyribonuclease (Pyrimidine Dimer)/genetics , Gene Expression Profiling , Germ-Line Mutation , Neoplastic Syndromes, Hereditary/genetics , Transcriptome , Adult , Aged , Biomarkers, Tumor/deficiency , DNA Repair/genetics , Deoxyribonuclease (Pyrimidine Dimer)/deficiency , Europe , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Heredity , Humans , Male , Middle Aged , Neoplastic Syndromes, Hereditary/enzymology , Neoplastic Syndromes, Hereditary/pathology , Pedigree , Phenotype , Risk Assessment , Risk Factors , Young Adult
7.
Science ; 358(6360): 234-238, 2017 10 13.
Article in English | MEDLINE | ID: mdl-28912133

ABSTRACT

Mutational processes underlie cancer initiation and progression. Signatures of these processes in cancer genomes may explain cancer etiology and could hold diagnostic and prognostic value. We developed a strategy that can be used to explore the origin of cancer-associated mutational signatures. We used CRISPR-Cas9 technology to delete key DNA repair genes in human colon organoids, followed by delayed subcloning and whole-genome sequencing. We found that mutation accumulation in organoids deficient in the mismatch repair gene MLH1 is driven by replication errors and accurately models the mutation profiles observed in mismatch repair-deficient colorectal cancers. Application of this strategy to the cancer predisposition gene NTHL1, which encodes a base excision repair protein, revealed a mutational footprint (signature 30) previously observed in a breast cancer cohort. We show that signature 30 can arise from germline NTHL1 mutations.


Subject(s)
CRISPR-Cas Systems , Colon , Deoxyribonuclease (Pyrimidine Dimer)/genetics , MutL Protein Homolog 1/genetics , Neoplasms/genetics , Organoids , Breast Neoplasms/genetics , Colorectal Neoplasms/genetics , DNA Mismatch Repair/genetics , DNA Repair/genetics , DNA Replication , Female , Germ-Line Mutation , Humans , INDEL Mutation , Mutagenesis , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...