Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 9(3): 810-21, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25437537

ABSTRACT

Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC) model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance.


Subject(s)
Diabetic Cardiomyopathies/pathology , Drug Evaluation, Preclinical , Induced Pluripotent Stem Cells/cytology , Models, Biological , Cell Differentiation/drug effects , Humans , Hypertrophy , Induced Pluripotent Stem Cells/drug effects , Lipid Metabolism/drug effects , Lipid Peroxidation/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Phenotype , Sarcomeres/drug effects , Sarcomeres/pathology , Small Molecule Libraries/analysis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
2.
Cell Stem Cell ; 12(2): 167-79, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23318055

ABSTRACT

The use of human pluripotent stem cells (hPSCs) in cell therapy is hindered by the tumorigenic risk from residual undifferentiated cells. Here we performed a high-throughput screen of over 52,000 small molecules and identified 15 pluripotent cell-specific inhibitors (PluriSIns), nine of which share a common structural moiety. The PluriSIns selectively eliminated hPSCs while sparing a large array of progenitor and differentiated cells. Cellular and molecular analyses demonstrated that the most selective compound, PluriSIn #1, induces ER stress, protein synthesis attenuation, and apoptosis in hPSCs. Close examination identified this molecule as an inhibitor of stearoyl-coA desaturase (SCD1), the key enzyme in oleic acid biosynthesis, revealing a unique role for lipid metabolism in hPSCs. PluriSIn #1 was also cytotoxic to mouse blastocysts, indicating that the dependence on oleate is inherent to the pluripotent state. Finally, application of PluriSIn #1 prevented teratoma formation from tumorigenic undifferentiated cells. These findings should increase the safety of hPSC-based treatments.


Subject(s)
Enzyme Inhibitors/pharmacology , Oleic Acid/chemical synthesis , Pluripotent Stem Cells/drug effects , Stearoyl-CoA Desaturase/antagonists & inhibitors , Animals , Blastocyst/cytology , Blastocyst/drug effects , Blastocyst/metabolism , Cells, Cultured , Humans , Mice , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism
3.
Nat Rev Drug Discov ; 2(1): 63-9, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12509760

ABSTRACT

Target selection in drug discovery--defined here as the decision to focus on finding an agent with a particular biological action that is anticipated to have therapeutic utility--is influenced by a complex balance of scientific, medical and strategic considerations. In this article, we provide an introduction to the key issues in target selection and discuss the rationale for decision making.


Subject(s)
Pharmacology/methods , Biotechnology/economics , Biotechnology/methods , Drug Industry/economics , Drug Industry/methods , Drug Industry/trends , Health Care Sector , Humans , Legislation, Drug/trends , Pharmacology/economics , Receptors, Drug/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...