Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 13(34): 8185-8191, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36005741

ABSTRACT

Angular momentum transfer and wavepacket dynamics of CO2(g) were measured on the picosecond time scale using polarization-resolved two-dimensional infrared (2D-IR) spectroscopy. The dynamics of rotational levels up to Jmax ≈ 50 are observed simultaneously at room temperature. Rotational wavepackets launched by the pump pulses cause oscillations in the intensity of individual peaks and beating patterns in the 2D-IR spectra. The structure of the rotationally resolved 2D-IR spectrum is explained using nonlinear response function theory. Spectral diffusion of the rotationally resolved 2D-IR peaks reveals information about angular momentum transfer. We demonstrate the ability to directly measure inelastic angular momentum dynamics simultaneously across the ∼50 thermally excited rotational levels over several hundred picoseconds.

2.
J Phys Chem Lett ; 13(34): 8104-8110, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35997534

ABSTRACT

The dynamics of excess protons in the protic ionic liquid (PIL) ethylammonium formate (EAF) have been investigated from femtoseconds to microseconds using visible pump mid-infrared probe spectroscopy. The pH jump following the visible photoexcitation of a photoacid (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS) results in proton transfer to the formate of the EAF. The proton transfer predominantly (∼70%) occurs over picoseconds through a preformed hydrogen-bonded tight complex between HPTS and EAF. We investigate the longer-range and longer-time-scale proton-transport processes in the PIL by obtaining the ground-state conjugate base (RO-) dynamics from the congested transient-infrared spectra. The spectral kinetics indicate that the protons diffuse only a few solvent shells from the parent photoacid before recombining with RO-. A kinetic isotope effect of nearly unity (kH/kD ≈ 1) suggests vehicular transfer and the transport of excess protons in this PIL. Our findings provide comprehensive insight into the complete photoprotolytic cycle of excess protons in a PIL.


Subject(s)
Ionic Liquids , Protons , Arylsulfonates/chemistry , Formates , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...