Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Commun Biol ; 4(1): 197, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33580154

ABSTRACT

In light of the recent accumulated knowledge on SARS-CoV-2 and its mode of human cells invasion, the binding of viral spike glycoprotein to human Angiotensin Converting Enzyme 2 (hACE2) receptor plays a central role in cell entry. We designed a series of peptides mimicking the N-terminal helix of hACE2 protein which contains most of the contacting residues at the binding site, exhibiting a high helical folding propensity in aqueous solution. Our best peptide-mimics are able to block SARS-CoV-2 human pulmonary cell infection with an inhibitory concentration (IC50) in the nanomolar range upon binding to the virus spike protein with high affinity. These first-in-class blocking peptide mimics represent powerful tools that might be used in prophylactic and therapeutic approaches to fight the coronavirus disease 2019 (COVID-19).


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19/virology , Peptides/pharmacology , SARS-CoV-2/physiology , Amino Acid Sequence , Cell Line , Circular Dichroism , Humans , Peptides/chemical synthesis , Peptides/chemistry , Peptides/metabolism , Protein Binding/drug effects , Protein Structure, Secondary , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication/drug effects
2.
J Med Chem ; 62(17): 7656-7668, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31403795

ABSTRACT

In order to optimize the potency of the first serum-stable peptide agonist of CD47 (PKHB1) in triggering regulated cell death of cancer cells, we designed a maturation process aimed to mimic the trimeric structure of the thrombospondin-1/CD47 binding epitope. For that purpose, an N-methylation scan of the PKHB1 sequence was realized to prevent peptide aggregation. Structural and pharmacological analyses were conducted in order to assess the conformational impact of these chemical modifications on the backbone structure and the biological activity. This structure-activity relationship study led to the discovery of a highly soluble N-methylated peptide that we termed PKT16. Afterward, this monomer was used for the design of a homotrimeric peptide mimic that we termed [PKT16]3, which proved to be 10-fold more potent than its monomeric counterpart. A pharmacological evaluation of [PKT16]3 in inducing cell death of adherent (A549) and nonadherent (MEC-1) cancer cell lines was also performed.


Subject(s)
Drug Design , Peptides/chemistry , Peptides/pharmacology , Thrombospondin 1/chemistry , A549 Cells , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Peptides/chemical synthesis , Protein Conformation , Protein Stability , Structure-Activity Relationship , Thrombospondin 1/pharmacology
3.
J Med Chem ; 62(10): 5096-5110, 2019 05 23.
Article in English | MEDLINE | ID: mdl-31013427

ABSTRACT

RIP1 kinase regulates necroptosis and inflammation and may play an important role in contributing to a variety of human pathologies, including inflammatory and neurological diseases. Currently, RIP1 kinase inhibitors have advanced into early clinical trials for evaluation in inflammatory diseases such as psoriasis, rheumatoid arthritis, and ulcerative colitis and neurological diseases such as amyotrophic lateral sclerosis and Alzheimer's disease. In this paper, we report on the design of potent and highly selective dihydropyrazole (DHP) RIP1 kinase inhibitors starting from a high-throughput screen and the lead-optimization of this series from a lead with minimal rat oral exposure to the identification of dihydropyrazole 77 with good pharmacokinetic profiles in multiple species. Additionally, we identified a potent murine RIP1 kinase inhibitor 76 as a valuable in vivo tool molecule suitable for evaluating the role of RIP1 kinase in chronic models of disease. DHP 76 showed efficacy in mouse models of both multiple sclerosis and human retinitis pigmentosa.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Nuclear Pore Complex Proteins/antagonists & inhibitors , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , RNA-Binding Proteins/antagonists & inhibitors , Animals , Biological Availability , Cell Line , Chronic Disease , Drug Design , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Enzyme Inhibitors/pharmacokinetics , Haplorhini , High-Throughput Screening Assays , Humans , Mice , Mice, Inbred C57BL , Models, Molecular , Multiple Sclerosis/drug therapy , Pyrazoles/pharmacokinetics , Rats , Retinitis Pigmentosa/drug therapy , Structure-Activity Relationship
4.
Hum Mol Genet ; 27(19): 3417-3433, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30007356

ABSTRACT

Carnitine palmitoyl transferase 2 (CPT2) deficiency is one of the most common inherited fatty acid oxidation (FAO) defects and represents a prototypical mitochondrial metabolic myopathy. Recent studies have suggested a pivotal role of adenosine monophosphate-activated protein kinase (AMPK) in skeletal muscle plasticity and mitochondrial homeostasis. Thus, we tested the potential of GSK773, a novel direct AMPK activator, to improve or correct FAO capacities in muscle cells from patients harboring various mutations. We used controls' and patients' myotubes and studied the parameters of FAO metabolism, of mitochondrial quantity and quality and of differentiation. We found that AMPK is constitutively activated in patients' myotubes, which exhibit both reduced FAO and impaired differentiation. GSK773 improves or corrects several metabolic hallmarks of CPT2 deficiency (deficient FAO flux and C16-acylcarnitine accumulation) by upregulating the expression of CPT2 protein. Beneficial effects of GSK773 are also likely due to stimulation of mitochondrial biogenesis and induction of mitochondrial fusion, by decreasing dynamin-related protein 1 and increasing mitofusin 2. GSK773 also induces a shift in myosin heavy chain isoforms toward the slow oxidative type and, therefore, fully corrects the differentiation process. We establish, through small interfering RNA knockdowns and pharmacological approaches, that these GSK773 effects are mediated through peroxisome proliferator-activated receptor gamma co-activator 1-alpha, reactive oxygen species and p38 mitogen-activated protein kinase, all key players of skeletal muscle plasticity. GSK773 recapitulates several important features of skeletal muscle adaptation to exercise. The results show that AMPK activation by GSK773 evokes the slow, oxidative myogenic program and triggers beneficial phenotypic adaptations in FAO-deficient myotubes. Thus, GSK773 might have therapeutic potential for correction of CPT2 deficiency.


Subject(s)
Carnitine O-Palmitoyltransferase/deficiency , Carnitine O-Palmitoyltransferase/genetics , Lipid Metabolism/genetics , Metabolism, Inborn Errors/genetics , Protein Kinases/genetics , Quinolones/pharmacology , AMP-Activated Protein Kinase Kinases , Carnitine O-Palmitoyltransferase/drug effects , Fatty Acids/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Humans , Metabolism, Inborn Errors/physiopathology , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mutation , Myosin Heavy Chains/genetics , PPAR alpha/genetics , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism , p38 Mitogen-Activated Protein Kinases/genetics
5.
J Med Chem ; 59(23): 10738-10749, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27933945

ABSTRACT

Lp-PLA2 has been explored as a target for a number of inflammation associated diseases, including cardiovascular disease and dementia. This article describes the discovery of a new fragment derived chemotype that interacts with the active site of Lp-PLA2. The starting fragment hit was discovered through an X-ray fragment screen and showed no activity in the bioassay (IC50 > 1 mM). The fragment hit was optimized using a variety of structure-based drug design techniques, including virtual screening, fragment merging, and improvement of shape complementarity. A novel series of Lp-PLA2 inhibitors was generated with low lipophilicity and a promising pharmacokinetic profile.


Subject(s)
Enzyme Inhibitors/pharmacology , Lactams/pharmacology , 1-Alkyl-2-acetylglycerophosphocholine Esterase , Administration, Oral , Animals , Biological Availability , Crystallography, X-Ray , Dogs , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Lactams/administration & dosage , Lactams/chemical synthesis , Lactams/chemistry , Models, Molecular , Molecular Structure , Rats , Structure-Activity Relationship , Tissue Distribution
6.
J Med Chem ; 59(18): 8412-21, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27526615

ABSTRACT

Thrombospondin-1 (TSP-1) is a glycoprotein considered as a key actor within the tumor microenvironment. Its binding to CD47, a cell surface receptor, triggers programmed cell death. Previous studies allowed the identification of 4N1K decapeptide derived from the TSP-1/CD47 binding epitope. Here, we demonstrate that this peptide is able to induce selective apoptosis of various cancer cell lines while sparing normal cells. A structure-activity relationship study led to the design of the first serum stable TSP-1 mimetic agonist peptide able to trigger selective programmed cell death (PCD) of at least lung, breast, and colorectal cancer cells. Altogether, these results will be of valuable interest for further investigation in the design of potent CD47 agonist peptides, opening new perspectives for the development of original anticancer therapies.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Peptides/chemistry , Peptides/pharmacology , Thrombospondin 1/agonists , Amino Acid Sequence , Apoptosis/drug effects , Cell Line, Tumor , Humans , Models, Molecular , Neoplasms/drug therapy , Neoplasms/metabolism , Structure-Activity Relationship , Thrombospondin 1/metabolism
7.
J Med Chem ; 59(11): 5356-67, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27167608

ABSTRACT

Elevated levels of human lipoprotein-associated phospholipase A2 (Lp-PLA2) are associated with cardiovascular disease and dementia. A fragment screen was conducted against Lp-PLA2 in order to identify novel inhibitors. Multiple fragment hits were observed in different regions of the active site, including some hits that bound in a pocket created by movement of a protein side chain (approximately 13 Å from the catalytic residue Ser273). Using structure guided design, we optimized a fragment that bound in this pocket to generate a novel low nanomolar chemotype, which did not interact with the catalytic residues.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Pyrazoles/pharmacology , Thiazoles/pharmacology , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Binding Sites/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
8.
ACS Med Chem Lett ; 4(7): 632-6, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-24900722

ABSTRACT

AMP-activated protein kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme that is activated in shortage of energy and suppressed in its surfeit. AMPK activation stimulates fatty acid oxidation, enhances insulin sensitivity, alleviates hyperglycemia and hyperlipidemia, and inhibits proinflammatory changes. Thus, AMPK is a well-received therapeutic target for type 2 diabetes and other metabolic disorders. Here, we will report the discovery of pyrrolopyridone derivatives as AMPK direct activators. We will illustrate the synthesis and structure-activity relationships of the series as well as some pharmacokinetic results. Some compounds exhibited encouraging oral exposure and were evaluated in a mouse diabetic model. Compound 17 showed oral activity at 30 mg/kg on blood glucose.

9.
Front Pharmacol ; 3: 128, 2012.
Article in English | MEDLINE | ID: mdl-22783192

ABSTRACT

Soluble guanylate cyclase (sGC), the primary mediator of nitric oxide (NO) bioactivity, exists as reduced (NO-sensitive) and oxidized (NO-insensitive) forms. We tested the hypothesis that the cardiovascular protective effects of NO-insensitive sGC activation would be potentiated under conditions of oxidative stress compared to those of NO-sensitive sGC stimulation. The cardiovascular effects of the NO-insensitive sGC activator GSK2181236A [a low, non-depressor dose, and a high dose which lowered mean arterial pressure (MAP) by 5-10 mmHg] and those of equi-efficacious doses of the NO-sensitive sGC stimulator BAY 60-4552 were assessed in (1) Sprague Dawley rats during coronary artery ischemia/reperfusion (I/R) and (2) spontaneously hypertensive stroke prone rats (SHR-SP) on a high salt/fat diet (HSFD). In I/R, neither compound reduced infarct size 24 h after reperfusion. In SHR-SP, HSFD increased MAP, urine output, microalbuminuria, and mortality, caused left ventricular hypertrophy with preserved ejection fraction, and impaired endothelium-dependent vasorelaxation. The low dose of BAY 60-4552, but not that of GSK2181236A, decreased urine output, and improved survival. Conversely, the low dose of GSK2181236A, but not that of BAY 60-4552, attenuated the development of cardiac hypertrophy. The high doses of both compounds similarly attenuated cardiac hypertrophy and improved survival. In addition to these effects, the high dose of BAY 60-4552 reduced urine output and microalbuminuria and attenuated the increase in MAP to a greater extent than did GSK2181236A. Neither compound improved endothelium-dependent vasorelaxation. In SHR-SP isolated aorta, the vasodilatory responses to the NO-dependent compounds carbachol and sodium nitroprusside were attenuated by HSFD. In contrast, the vasodilatory responses to both GSK2181236A and BAY 60-4552 were unaltered by HSFD, indicating that reduced NO-bioavailability and not changes in the oxidative state of sGC is responsible for the vascular dysfunction. In summary, GSK2181236A and BAY 60-4552 provide partial benefit against hypertension-induced end-organ damage. The differential beneficial effects observed between these compounds could reflect tissue-specific changes in the oxidative state of sGC and might help direct the clinical development of these novel classes of therapeutic agents.

10.
Biochem J ; 403(1): 139-48, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17147517

ABSTRACT

AMPK (AMP-activated protein kinase) is activated allosterically by AMP and by phosphorylation of Thr172 within the catalytic alpha subunit. Here we show that mutations in the regulatory gamma subunit reduce allosteric activation of the kinase by AMP. In addition to its allosteric effect, AMP significantly reduces the dephosphorylation of Thr172 by PP (protein phosphatase)2Calpha. Moreover, a mutation in the gamma subunit almost completely abolishes the inhibitory effect of AMP on dephosphorylation. We were unable to detect any effect of AMP on Thr172 phosphorylation by either LKB1 or CaMKKbeta (Ca2+/calmodulin-dependent protein kinase kinase beta) using recombinant preparations of the proteins. However, using partially purified AMPK from rat liver, there was an apparent AMP-stimulation of Thr172 phosphorylation by LKB1, but this was blocked by the addition of NaF, a PP inhibitor. Western blotting of partially purified rat liver AMPK and LKB1 revealed the presence of PP2Calpha in the preparations. We suggest that previous studies reporting that AMP promotes phosphorylation of Thr172 were misinterpreted. A plausible explanation for this effect of AMP is inhibition of dephosphorylation by PP2Calpha, present in the preparations of the kinases used in the earlier studies. Taken together, our results demonstrate that AMP activates AMPK via two mechanisms: by direct allosteric activation and by protecting Thr172 from dephosphorylation. On the basis of our new findings, we propose a simple model for the regulation of AMPK in mammalian cells by LKB1 and CaMKKbeta. This model accounts for activation of AMPK by two distinct signals: a Ca2+-dependent pathway, mediated by CaMKKbeta and an AMP-dependent pathway, mediated by LKB1.


Subject(s)
Adenosine Monophosphate/metabolism , Multienzyme Complexes/metabolism , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases , Animals , Cloning, Molecular , Enzyme Activation , Escherichia coli/enzymology , Escherichia coli/genetics , Kinetics , Liver/enzymology , Models, Biological , Multienzyme Complexes/genetics , Phosphorylation , Phosphothreonine/metabolism , Protein Serine-Threonine Kinases/genetics , Rats , Recombinant Proteins/metabolism
11.
J Lipid Res ; 47(6): 1281-8, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16508037

ABSTRACT

The alkaloid drug berberine (BBR) was recently described to decrease plasma cholesterol and triglycerides (TGs) in hypercholesterolemic patients by increasing expression of the hepatic low density lipoprotein receptor (LDLR). Using HepG2 human hepatoma cells, we found that BBR inhibits cholesterol and TG synthesis in a similar manner to the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide 1-beta-ribofuranoside (AICAR). Significant increases in AMPK phosphorylation and AMPK activity were observed when the cells were incubated with BBR. Activation of AMPK was also demonstrated by measuring the phosphorylation of acetyl-CoA carboxylase, a substrate of AMPK, correlated with a subsequent increase in fatty acid oxidation. All of these effects were abolished by the mitogen-activated protein kinase kinase inhibitor PD98059. Treatment of hyperlipidemic hamsters with BBR decreased plasma LDL cholesterol and strongly reduced fat storage in the liver. These findings indicate that BBR, in addition to upregulating the LDLR, inhibits lipid synthesis in human hepatocytes through the activation of AMPK. These effects could account for the strong reduction of plasma TGs observed with this drug in clinical trials.


Subject(s)
Adenylate Kinase/metabolism , Berberine/pharmacology , Hypolipidemic Agents/pharmacology , Lipids/biosynthesis , Acetyl-CoA Carboxylase/metabolism , Aminoimidazole Carboxamide/pharmacology , Animals , Cell Line, Tumor , Cricetinae , Enzyme Activation/drug effects , Fatty Acids/metabolism , Humans , Lipid Metabolism/drug effects , Male , Phosphorylation/drug effects , Receptors, LDL/metabolism
12.
Diabetes ; 54(5): 1331-9, 2005 May.
Article in English | MEDLINE | ID: mdl-15855317

ABSTRACT

AMP-activated protein kinase (AMPK) is a major therapeutic target for the treatment of diabetes. We investigated the effect of a short-term overexpression of AMPK specifically in the liver by adenovirus-mediated transfer of a gene encoding a constitutively active form of AMPKalpha2 (AMPKalpha2-CA). Hepatic AMPKalpha2-CA expression significantly decreased blood glucose levels and gluconeogenic gene expression. Hepatic expression of AMPKalpha2-CA in streptozotocin-induced and ob/ob diabetic mice abolished hyperglycemia and decreased gluconeogenic gene expression. In normal mouse liver, AMPKalpha2-CA considerably decreased the refeeding-induced transcriptional activation of genes encoding proteins involved in glycolysis and lipogenesis and their upstream regulators, SREBP-1 (sterol regulatory element-binding protein-1) and ChREBP (carbohydrate response element-binding protein). This resulted in decreases in hepatic glycogen synthesis and circulating lipid levels. Surprisingly, despite the inhibition of hepatic lipogenesis, expression of AMPKalpha2-CA led to fatty liver due to the accumulation of lipids released from adipose tissue. The relative scarcity of glucose due to AMPKalpha2-CA expression led to an increase in hepatic fatty acid oxidation and ketone bodies production as an alternative source of energy for peripheral tissues. Thus, short-term AMPK activation in the liver reduces blood glucose levels and results in a switch from glucose to fatty acid utilization to supply energy needs.


Subject(s)
Fatty Liver/enzymology , Hepatocytes/physiology , Hypoglycemia/enzymology , Liver/enzymology , Multienzyme Complexes/genetics , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinases , Animals , Base Sequence , Blood Glucose/metabolism , Cloning, Molecular , DNA Primers , Enzyme Activation , Fatty Acids/metabolism , Hepatocytes/drug effects , Hepatocytes/enzymology , Kinetics , Mice , Mice, Inbred C57BL , Mice, Obese , Multienzyme Complexes/metabolism , Protein Serine-Threonine Kinases/metabolism , Recombinant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transfection
13.
J Med Chem ; 46(21): 4525-32, 2003 Oct 09.
Article in English | MEDLINE | ID: mdl-14521414

ABSTRACT

Starting from ethyl beta-carboline-3-carboxylate (beta-CCE), 1, a modest inhibitor of type 5 phosphodiesterase (PDE5), a series of functionalized tetrahydro-beta-carboline derivatives has been identified as a novel chemical class of potent and selective PDE5 inhibitors. Optimization of the side chain on the hydantoin ring of initial lead compound 2 and of the aromatic ring on position 5 led to the identification of compound 6e, a highly potent and selective PDE5 inhibitor, with greater selectivity for PDE5 vs PDE1-4 than sildenafil. Compound 6e demonstrated a long-lasting and significant blood pressure lowering effect after iv administration in the spontaneously hypertensive rat model but showed only moderate oral in vivo efficacy.


Subject(s)
3',5'-Cyclic-GMP Phosphodiesterases/antagonists & inhibitors , Carbolines/chemical synthesis , Carbolines/pharmacology , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/pharmacology , Animals , Blood Pressure/drug effects , Cattle , Cyclic GMP/biosynthesis , Cyclic Nucleotide Phosphodiesterases, Type 5 , Drug Design , Hydantoins/chemical synthesis , Hydantoins/pharmacology , Indicators and Reagents , Isomerism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Rats , Rats, Inbred SHR , Structure-Activity Relationship , Tadalafil
14.
J Med Chem ; 46(21): 4533-42, 2003 Oct 09.
Article in English | MEDLINE | ID: mdl-14521415

ABSTRACT

Modification of the hydantoin ring in the previously described lead compound 2a has led to the discovery of compound 12a, tadalafil, a highly potent and highly selective PDE5 inhibitor. The replacement of the hydantoin in compound 2a by a piperazinedione ring led to compound cis-11a which showed similar PDE5 inhibitory potency. Introduction of a 3,4-methylenedioxy substitution on the phenyl ring in position 6 led to a potent PDE5 inhibitor cis-11c with increased cellular potency. Optimization of the chain on the piperazinedione ring led to the identification of the racemic cis-N-methyl derivative 11i. High diastereospecificity for PDE5 inhibition was observed in the piperazinedione series with the cis-(6R,12aR) enantiomer displaying the highest PDE5 inhibitory activity. The piperazinedione 12a, tadalafil (GF196960), has been identified as a highly potent PDE5 inhibitor (IC(50) = 5 nM) with high selectivity for PDE5 vs PDE1-4 and PDE6. Compound 12a displays 85-fold greater selectivity vs PDE6 than sildenafil 1. 12a showed profound and long-lasting blood pressure lowering activity (30 mmHg/>7 h) in the spontaneously hypertensive rat model after oral administration (5 mg/kg).


Subject(s)
3',5'-Cyclic-GMP Phosphodiesterases/antagonists & inhibitors , Carbolines/chemical synthesis , Carbolines/pharmacology , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/pharmacology , Animals , Blood Pressure/drug effects , Carbolines/pharmacokinetics , Cattle , Cyclic GMP/biosynthesis , Cyclic Nucleotide Phosphodiesterases, Type 5 , Drug Design , Hydantoins/chemical synthesis , Hydantoins/pharmacology , Indicators and Reagents , Isomerism , Models, Molecular , Molecular Conformation , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Phosphodiesterase Inhibitors/pharmacokinetics , Rats , Rats, Inbred SHR , Structure-Activity Relationship , Tadalafil
SELECTION OF CITATIONS
SEARCH DETAIL