Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-30881191

ABSTRACT

Therapies targeting mutant huntingtin DNA, mRNA, and protein have a chance at becoming the first disease-modifying treatments for Huntington's disease, a fatal inherited neurodegenerative disorder for which only symptom management treatments are available today. This review focuses on evidence addressing several key questions pertinent to huntingtin-lowering, ranging from the functions of wild-type huntingtin (wtHTT) that may be disrupted by huntingtin-lowering treatments through the various ways huntingtin can be lowered, the tolerability of wtHTT-lowering in mice and primates, what has been found in the Ionis Pharmaceutical safety trial of a huntingtin-lowering therapy, and to the question of how much mutant huntingtin may need to be lowered for a therapy to be clinically effective. We conclude that adverse consequences of lowering wtHTT in animals appear to be brain region-specific, and/or dependent upon the animal's stage of development and the amount by which huntingtin is lowered. Therefore, safe approaches to huntingtin-lowering in patients may be to lower huntingtin only moderately, or lower huntingtin only in the most affected brain regions, or lower huntingtin allele-selectively, or all of the above. Many additional questions about huntingtin-lowering remain open, and will only be answered by upcoming clinical trials, such as whether the delivery approaches currently planned will be adequate to get the treatment to the necessary brain regions, and whether non-allele-selective huntingtin-lowering will be safe in the long run. Meantime, there is a role for preclinical research to address key knowledge gaps, including the effects of non-allele-selective huntingtin-lowering on protein trafficking and viability at the cellular level, the tolerability of wtHTT-lowering in the corticostriatal connections of the primate brain, and the effects of this lowering on the functioning of neurotransmitter systems and the transport of neurotrophic factors to the striatum.

2.
Neurobiol Aging ; 36(2): 1174-82, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25443764

ABSTRACT

The prevalence of both parkinsonian signs and Parkinson's disease (PD) per se increases with age. Although the pathophysiology of PD has been studied extensively, less is known about the functional changes taking place in the basal ganglia circuitry with age. To specifically address this issue, 3 groups of rhesus macaques were studied: normal middle-aged animals (used as controls), middle-aged animals with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, and aged animals (>20 years old) with declines in motor function. All animals underwent the same behavioral and pharmacologic magnetic resonance imaging (phMRI) procedures to measure changes in basal ganglia function in response to dopaminergic drug challenges consisting of apomorphine administration followed by either a D1 (SCH23390) or a D2 (raclopride) receptor antagonist. Significant functional changes were predominantly seen in the external segment of the globus pallidus (GPe) in aged animals and in the striatum (caudate nucleus and putamen) in MPTP-lesioned animals. Despite significant differences seen in the putamen and GPe between MPTP-lesioned versus aged animals, a similar response profile to dopaminergic stimulations was found between these 2 groups in the internal segment of the GP. In contrast, the pharmacologic responses seen in the control animals were much milder compared with the other 2 groups in all the examined areas. Our phMRI findings in MPTP-lesioned parkinsonian and aged animals suggest that changes in basal ganglia function in the elderly may differ from those seen in parkinsonian patients and that phMRI could be used to distinguish PD from other age-associated functional alterations in the brain.


Subject(s)
Aging/drug effects , Aging/pathology , Apomorphine/pharmacology , Basal Ganglia/drug effects , Basal Ganglia/pathology , Dopamine Agents/pharmacology , Magnetic Resonance Imaging/methods , Parkinson Disease, Secondary/diagnosis , Parkinson Disease, Secondary/pathology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Aging/physiology , Animals , Basal Ganglia/physiopathology , Benzazepines/pharmacology , Diagnosis, Differential , Female , Macaca mulatta , Motor Activity , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/physiopathology , Raclopride/pharmacology
3.
Exp Neurol ; 202(2): 497-505, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16962582

ABSTRACT

Significant differences have been reported in results from three clinical trials evaluating intraputamenal infusion of glial cell line-derived neurotrophic factor (GDNF) for the treatment of Parkinson's disease. To determine if problems in drug bioavailability could have contributed to the discrepancies between studies, we have analyzed the distribution of intraputamenally infused GDNF in the rhesus monkey brain using the delivery system and infusion protocol followed in a phase 2 clinical trial that failed to achieve its primary endpoint. I125-GDNF was unilaterally infused into the putamen of three adult rhesus monkeys for 7 days. Three age- and sex-matched animals received vehicle infusions following identical procedures. GDNF levels in the brain, peripheral organs, blood and CSF were quantified and mapped by GDNF immunocytochemistry, GDNF ELISAs and I125 measurements. Infused GDNF was found to be unevenly concentrated around the catheter, with tissue levels dropping exponentially with increasing distance from the point source of the single opening in the catheter tip. The volume of distribution of GDNF around the catheter, as determined by immunocytochemistry, varied over four-fold between animals ranging from 87 to 369 mm3. The concentration of GDNF around the catheter tip and limited diffusion into surrounding brain parenchyma support the hypothesis that drug bioavailability was limited to a small portion (2-9%) of the human putamen in the clinical trial using this catheter and infusion protocol.


Subject(s)
Brain/drug effects , Brain/metabolism , Clinical Trials, Phase II as Topic , Glial Cell Line-Derived Neurotrophic Factor/administration & dosage , Animals , Autoradiography/methods , Carbon Isotopes/pharmacokinetics , Drug Delivery Systems , Drug Evaluation , Enzyme-Linked Immunosorbent Assay/methods , Female , Glial Cell Line-Derived Neurotrophic Factor/pharmacokinetics , Immunohistochemistry/methods , Macaca mulatta , Tissue Distribution , Treatment Failure
SELECTION OF CITATIONS
SEARCH DETAIL
...