Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Future Med Chem ; 5(17): 2037-56, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24215345

ABSTRACT

BACKGROUND: Recently, we reported ethyl nicotinates as antagonists of the P2Y12 receptor, which is an important target in antiplatelet therapies. A potential liability of these compounds was their generally high in vivo clearance due to ethyl ester hydrolysis. RESULTS: Shape and electrostatic similarity matching was used to select five-membered heterocycles to replace the ethyl ester functionality. The 5-methyl and 5-ethyl-oxazole bioisosteres retained the sub-micromolar potency levels of the parent ethyl esters. Many oxazoles showed a higher CYP450 dependent microsomal metabolism than the corresponding ethyl esters. Structure activity relationship investigations supported by ab initio calculations suggested that a correctly positioned alkyl substituent and a strong hydrogen bond acceptor were necessary structural motifs for binding. In rat pharmacokinetics, the low clearance was retained upon replacement of an ethyl ester with a 5-ethyl-oxazole. CONCLUSION: The use of shape and electrostatic similarity led to the successful replacement of a metabolically labile ethyl ester functionality with 5-alkyl-oxazole bioisosteres.


Subject(s)
Oxazoles/chemistry , Oxazoles/pharmacology , Purinergic P2Y Receptor Antagonists/chemistry , Purinergic P2Y Receptor Antagonists/pharmacology , Animals , Humans , Hydrogen Bonding , Microsomes/metabolism , Models, Molecular , Oxazoles/metabolism , Oxazoles/pharmacokinetics , Purinergic P2Y Receptor Antagonists/metabolism , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Rats , Structure-Activity Relationship
2.
Eur J Med Chem ; 65: 360-75, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23747805

ABSTRACT

The present paper describes the development of a new series of P2Y12 receptor antagonists based on our previously reported piperazinyl urea series 1 (IC50 binding affinity = 0.33 µM, aq solubility <0.1 µM, microsomal CLint (HLM) ≥300 µM/min/mg). By replacement of the urea functionality with a sulfonylurea group we observed increased affinity along with improved stability and solubility as exemplified by 47 (IC50 binding affinity = 0.042 µM, aq solubility = 90 µM, microsomal CLint (HLM) = 70 µM/min/mg). Further improvements in affinity and metabolic stability were achieved by replacing the central piperazine ring with a 3-aminoazetidine as exemplified by 3 (IC50 binding affinity = 0.0062 µM, aq solubility = 83 µM, microsomal CLint (HLM) = 28 µM/min/mg). The improved affinity observed in the in vitro binding assay also translated to the potency observed in the WPA aggregation assay (47: 19 nM and 3: 9.5 nM) and the observed in vitro ADME properties translates to the in vivo PK properties observed in rat. In addition, we found that the chemical stability of the sulfonylureas during prolonged storage in solution was related to the sulfonyl urea linker and depended on the type of solvent and the substitution pattern of the sulfonyl urea functionality.


Subject(s)
Nicotinic Acids/pharmacology , Purinergic P2Y Receptor Antagonists/pharmacology , Receptors, Purinergic P2Y12/metabolism , Urea/analogs & derivatives , Animals , Molecular Structure , Nicotinic Acids/chemical synthesis , Nicotinic Acids/chemistry , Purinergic P2Y Receptor Antagonists/chemical synthesis , Purinergic P2Y Receptor Antagonists/chemistry , Rats , Structure-Activity Relationship , Urea/chemical synthesis , Urea/chemistry , Urea/pharmacology
3.
J Med Chem ; 50(9): 2200-12, 2007 May 03.
Article in English | MEDLINE | ID: mdl-17408249

ABSTRACT

The bradykinin B1 receptor is induced following tissue injury and/or inflammation. Antagonists of this receptor have been studied as promising candidates for treatment of chronic pain. We have identified aryl sulfonamides containing a chiral chroman diamine moiety that are potent antagonists of the human B1 receptor. Our previously communicated lead, compound 2, served as a proof-of-concept molecule, but suffered from poor pharmacokinetic properties. With guidance from metabolic profiling, we performed structure-activity relationship studies and have identified potent analogs of 2. Variation of the sulfonamide moiety revealed a preference for 3- and 3,4-disubstituted aryl sulfonamides, while bulky secondary and tertiary amines were preferred at the benzylic amine position for potency at the B1 receptor. Modifying the beta-amino acid core of the molecule lead to the discovery of highly potent compounds with improved in vitro pharmacokinetic properties. The most potent analog at the human receptor, compound 38, was also active in a rabbit B1 receptor cellular assay. Furthermore, compound 38 displayed in vivo activity in two rabbit models, a pharmacodynamic model with a blood pressure readout and an efficacy model of inflammatory pain.


Subject(s)
Amides/chemical synthesis , Analgesics/chemical synthesis , Benzopyrans/chemical synthesis , Bradykinin B1 Receptor Antagonists , Chromans/chemical synthesis , Sulfonamides/chemical synthesis , Amides/pharmacokinetics , Amides/pharmacology , Analgesics/pharmacokinetics , Analgesics/pharmacology , Animals , Benzopyrans/pharmacokinetics , Benzopyrans/pharmacology , Blood Pressure/drug effects , CHO Cells , Calcium/metabolism , Chromans/pharmacokinetics , Chromans/pharmacology , Cricetinae , Cricetulus , Humans , In Vitro Techniques , Inflammation/drug therapy , Male , Microsomes/metabolism , Pain/drug therapy , Rabbits , Rats , Rats, Sprague-Dawley , Receptor, Bradykinin B1/agonists , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology
4.
Bioorg Med Chem Lett ; 17(9): 2608-13, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17331716

ABSTRACT

Cholesteryl ester transfer protein is a plasma glycoprotein that transfers cholesterol ester between lipoprotein particles. Inhibition of this protein, in vitro and in vivo, produces an increase in plasma high density lipoprotein cholesterol (HDL-C). This communication will describe the SAR and synthesis of a series of substituted tetrahydroquinoxaline CETP inhibitors from early mu lead to advanced enantiomerically pure analogs.


Subject(s)
Chemistry, Pharmaceutical/methods , Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Esters/chemistry , Quinoxalines/chemical synthesis , Quinoxalines/pharmacology , Tetrazoles/chemistry , Animals , Cholesterol, HDL/metabolism , Drug Design , Humans , Hydrogen-Ion Concentration , Inhibitory Concentration 50 , Molecular Conformation , Rats , Stereoisomerism , Structure-Activity Relationship
5.
J Med Chem ; 50(4): 607-10, 2007 Feb 22.
Article in English | MEDLINE | ID: mdl-17243660

ABSTRACT

We report the discovery of chroman 28, a potent and selective antagonist of human, nonhuman primate, rat, and rabbit bradykinin B1 receptors (0.4-17 nM). At 90 mg/kg s.c., 28 decreased plasma extravasation in two rodent models of inflammation. A novel method to calculate entropy is introduced and ascribed approximately 30% of the gained affinity between "flexible" 4 (Ki = 132 nM) and "rigid" 28 (Ki = 0.77 nM) to decreased conformational entropy.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Bradykinin B1 Receptor Antagonists , Chromans/chemical synthesis , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , CHO Cells , Capillary Permeability/drug effects , Chlorocebus aethiops , Chromans/pharmacokinetics , Chromans/pharmacology , Cricetinae , Cricetulus , Crystallography, X-Ray , Entropy , Humans , In Vitro Techniques , Models, Molecular , Molecular Conformation , Pleurisy/drug therapy , Rabbits , Rats , Species Specificity , Stereoisomerism , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 16(8): 2071-5, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16464576

ABSTRACT

The bradykinin 1 (B1) receptor is upregulated during times of inflammation and is important for maintaining inflamed and chronic pain states. Blocking this receptor has been shown to reverse and/or ameliorate pain and inflammation in animal models. In this report, we describe a new class of B1 receptor antagonists that contain the piperidine acetic acid tetralin core. A structure-activity relationship for these analogs is described in this paper. The most potent compounds from this class have IC50s<20 nM in a B1 receptor functional assay. One of these compounds, 13g, shows modest oral bioavailability in rats.


Subject(s)
Analgesics/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Bradykinin B1 Receptor Antagonists , Tetrahydronaphthalenes/chemistry , Acetic Acid/chemistry , Administration, Oral , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Biological Availability , Inhibitory Concentration 50 , Piperidines/chemistry , Rats , Structure-Activity Relationship
7.
Angew Chem Int Ed Engl ; 37(20): 2848-2850, 1998 Nov 02.
Article in English | MEDLINE | ID: mdl-29711099

ABSTRACT

One common synthetic route creates small-molecule libraries directed toward two functionally distinct target families. The novel structural template 1 can independently display the necessary pharmacophore patterns for inhibition of members of two different biomolecular target families, the matrix metalloproteinases (MMPs) or the phosphodiesterases (PDEs). The incorporation of multiple target family directed design elements into combinatorial library design could help expedite the pharmaceutical lead discovery process. Z=OR' (PDE4), H (MMPs).

SELECTION OF CITATIONS
SEARCH DETAIL
...