Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4413, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782910

ABSTRACT

In Josephson diodes the asymmetry between positive and negative current branch of the current-phase relation leads to a polarity-dependent critical current and Josephson inductance. The supercurrent nonreciprocity can be described as a consequence of the anomalous Josephson effect -a φ0-shift of the current-phase relation- in multichannel ballistic junctions with strong spin-orbit interaction. In this work, we simultaneously investigate φ0-shift and supercurrent diode efficiency on the same Josephson junction by means of a superconducting quantum interferometer. By electrostatic gating, we reveal a direct link between φ0-shift and diode effect. Our findings show that spin-orbit interaction in combination with a Zeeman field plays an important role in determining the magnetochiral anisotropy and the supercurrent diode effect.

2.
Nat Nanotechnol ; 18(11): 1266-1272, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37430040

ABSTRACT

The recent discovery of the intrinsic supercurrent diode effect, and its prompt observation in a rich variety of systems, has shown that non-reciprocal supercurrents naturally emerge when both space-inversion and time-inversion symmetries are broken. In Josephson junctions, non-reciprocal supercurrent can be conveniently described in terms of spin-split Andreev states. Here we demonstrate a sign reversal of the Josephson inductance magnetochiral anisotropy, a manifestation of the supercurrent diode effect. The asymmetry of the Josephson inductance as a function of the supercurrent allows us to probe the current-phase relation near equilibrium, and to probe jumps in the junction ground state. Using a minimal theoretical model, we can then link the sign reversal of the inductance magnetochiral anisotropy to the so-called 0-π-like transition, a predicted but still elusive feature of multichannel junctions. Our results demonstrate the potential of inductance measurements as sensitive probes of the fundamental properties of unconventional Josephson junctions.

3.
J Phys Condens Matter ; 34(15)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35051919

ABSTRACT

Simultaneous breaking of inversion- and time-reversal symmetry in Josephson junction (JJ) leads to a possible violation of theI(φ) = -I(-φ) equality for the current-phase relation. This is known as anomalous Josephson effect and it produces a phase shiftφ0in sinusoidal current-phase relations. In ballistic JJs with non-sinusoidal current phase relation the observed phenomenology is much richer, including the supercurrent diode effect and the magnetochiral anisotropy (MCA) of Josephson inductance. In this work, we present measurements of both effects on arrays of JJs defined on epitaxial Al/InAs heterostructures. We show that the orientation of the current with respect to the lattice affects the MCA, possibly as the result of a finite Dresselhaus component. In addition, we show that the two-fold symmetry of the Josephson inductance reflects in the activation energy for phase slips.

4.
Nat Commun ; 11(1): 3212, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32587242

ABSTRACT

Majorana zero modes are leading candidates for topological quantum computation due to non-local qubit encoding and non-abelian exchange statistics. Spatially separated Majorana modes are expected to allow phase-coherent single-electron transport through a topological superconducting island via a mechanism referred to as teleportation. Here we experimentally investigate such a system by patterning an elongated epitaxial InAs-Al island embedded in an Aharonov-Bohm interferometer. With increasing parallel magnetic field, a discrete sub-gap state in the island is lowered to zero energy yielding persistent 1e-periodic Coulomb blockade conductance peaks (e is the elementary charge). In this condition, conductance through the interferometer is observed to oscillate in a perpendicular magnetic field with a flux period of h/e (h is Planck's constant), indicating coherent transport of single electrons through the islands, a signature of electron teleportation via Majorana modes.

5.
Phys Rev Lett ; 124(22): 226801, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32567899

ABSTRACT

We demonstrate concomitant measurement of phase-dependent critical current and Andreev bound state spectrum in a highly transmissive InAs Josephson junction embedded in a dc superconducting quantum interference device (SQUID). Tunneling spectroscopy reveals Andreev bound states with near unity transmission probability. A nonsinusoidal current-phase relation is derived from the Andreev spectrum, showing excellent agreement with the one extracted from the SQUID critical current. Both measurements are reconciled within a short junction model where multiple Andreev bound states, with various transmission probabilities, contribute to the entire supercurrent flowing in the junction.

6.
Phys Rev Lett ; 121(25): 256803, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30608825

ABSTRACT

We present measurements of one-dimensional superconductor-semiconductor Coulomb islands, fabricated by gate confinement of a two-dimensional InAs heterostructure with an epitaxial Al layer. When tuned via electrostatic side gates to regimes without subgap states, Coulomb blockade reveals Cooper-pair mediated transport. When subgap states are present, Coulomb peak positions and heights oscillate in a correlated way with magnetic field and gate voltage, as predicted theoretically, with (anti)crossings in (parallel) transverse magnetic field indicating Rashba-type spin-orbit coupling. Overall results are consistent with a picture of overlapping Majorana zero modes in finite wires.

SELECTION OF CITATIONS
SEARCH DETAIL
...