Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37425769

ABSTRACT

Extraintestinal autoimmune diseases are multifactorial with translocating gut pathobionts implicated as instigators and perpetuators in mice. However, the microbial contributions to autoimmunity in humans remain largely unclear, including whether specific pathological human adaptive immune responses are triggered by such pathobionts. We show here that the translocating pathobiont Enterococcus gallinarum induces human IFNγ + Th17 differentiation and IgG3 subclass switch of anti- E. gallinarum RNA and correlating anti-human RNA autoantibody responses in patients with systemic lupus erythematosus and autoimmune hepatitis. Human Th17 induction by E. gallinarum is cell-contact dependent and involves TLR8-mediated human monocyte activation. In murine gnotobiotic lupus models, E. gallinarum translocation triggers IgG3 anti-RNA autoantibody titers that correlate with renal autoimmune pathophysiology and with disease activity in patients. Overall, we define cellular mechanisms of how a translocating pathobiont induces human T- and B-cell-dependent autoimmune responses, providing a framework for developing host- and microbiota-derived biomarkers and targeted therapies in extraintestinal autoimmune diseases. One Sentence Summary: Translocating pathobiont Enterococcus gallinarum promotes human Th17 and IgG3 autoantibody responses linked to disease activity in autoimmune patients.

2.
Nature ; 600(7890): 707-712, 2021 12.
Article in English | MEDLINE | ID: mdl-34853467

ABSTRACT

Pro-inflammatory T cells in the central nervous system (CNS) are causally associated with multiple demyelinating and neurodegenerative diseases1-6, but the pathways that control these responses remain unclear. Here we define a population of inflammatory group 3 innate lymphoid cells (ILC3s) that infiltrate the CNS in a mouse model of multiple sclerosis. These ILC3s are derived from the circulation, localize in proximity to infiltrating T cells in the CNS, function as antigen-presenting cells that restimulate myelin-specific T cells, and are increased in individuals with multiple sclerosis. Notably, antigen presentation by inflammatory ILC3s is required to promote T cell responses in the CNS and the development of multiple-sclerosis-like disease in mouse models. By contrast, conventional and tissue-resident ILC3s in the periphery do not appear to contribute to disease induction, but instead limit autoimmune T cell responses and prevent multiple-sclerosis-like disease when experimentally targeted to present myelin antigen. Collectively, our data define a population of inflammatory ILC3s that is essential for directly promoting T-cell-dependent neuroinflammation in the CNS and reveal the potential of harnessing peripheral tissue-resident ILC3s for the prevention of autoimmune disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Antigen-Presenting Cells , Antigens/metabolism , Immunity, Innate , Lymphocytes , Mice , Neuroinflammatory Diseases , Sclerosis/metabolism
3.
Immunity ; 53(5): 1015-1032.e8, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33207209

ABSTRACT

Solitary intestinal lymphoid tissues such as cryptopatches (CPs) and isolated lymphoid follicles (ILFs) constitute steady-state activation hubs containing group 3 innate lymphoid cells (ILC3) that continuously produce interleukin (IL)-22. The outer surface of CPs and ILFs is demarcated by a poorly characterized population of CD11c+ cells. Using genome-wide single-cell transcriptional profiling of intestinal mononuclear phagocytes and multidimensional flow cytometry, we found that CP- and ILF-associated CD11c+ cells were a transcriptionally distinct subset of intestinal cDCs, which we term CIA-DCs. CIA-DCs required programming by CP- and ILF-resident CCR6+ ILC3 via lymphotoxin-ß receptor signaling in cDCs. CIA-DCs differentially expressed genes associated with immunoregulation and were the major cellular source of IL-22 binding protein (IL-22BP) at steady state. Mice lacking CIA-DC-derived IL-22BP exhibited diminished expression of epithelial lipid transporters, reduced lipid resorption, and changes in body fat homeostasis. Our findings provide insight into the design principles of an immunoregulatory checkpoint controlling nutrient absorption.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Immunity, Innate , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Peyer's Patches/cytology , Peyer's Patches/immunology , Receptors, Interleukin/biosynthesis , Animals , Biomarkers , Gene Expression , Gene Expression Profiling , Gene Expression Regulation , Immunophenotyping , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Lipid Metabolism , Mice , Mice, Transgenic , RNA, Small Cytoplasmic/genetics , Receptors, Interleukin/genetics , Signal Transduction
4.
Nature ; 566(7743): 249-253, 2019 02.
Article in English | MEDLINE | ID: mdl-30700914

ABSTRACT

Environmental genotoxic factors pose a challenge to the genomic integrity of epithelial cells at barrier surfaces that separate host organisms from the environment. They can induce mutations that, if they occur in epithelial stem cells, contribute to malignant transformation and cancer development1-3. Genome integrity in epithelial stem cells is maintained by an evolutionarily conserved cellular response pathway, the DNA damage response (DDR). The DDR culminates in either transient cell-cycle arrest and DNA repair or elimination of damaged cells by apoptosis4,5. Here we show that the cytokine interleukin-22 (IL-22), produced by group 3 innate lymphoid cells (ILC3) and γδ T cells, is an important regulator of the DDR machinery in intestinal epithelial stem cells. Using a new mouse model that enables sporadic inactivation of the IL-22 receptor in colon epithelial stem cells, we demonstrate that IL-22 is required for effective initiation of the DDR following DNA damage. Stem cells deprived of IL-22 signals and exposed to carcinogens escaped DDR-controlled apoptosis, contained more mutations and were more likely to give rise to colon cancer. We identified metabolites of glucosinolates, a group of phytochemicals contained in cruciferous vegetables, to be a widespread source of genotoxic stress in intestinal epithelial cells. These metabolites are ligands of the aryl hydrocarbon receptor (AhR)6, and AhR-mediated signalling in ILC3 and γδ T cells controlled their production of IL-22. Mice fed with diets depleted of glucosinolates produced only very low levels of IL-22 and, consequently, the DDR in epithelial cells of mice on a glucosinolate-free diet was impaired. This work identifies a homeostatic network protecting stem cells against challenge to their genome integrity by AhR-mediated 'sensing' of genotoxic compounds from the diet. AhR signalling, in turn, ensures on-demand production of IL-22 by innate lymphocytes directly regulating components of the DDR in epithelial stem cells.


Subject(s)
Cell Transformation, Neoplastic/drug effects , Colon/cytology , Interleukins/pharmacology , Mutagens/pharmacology , Stem Cells/drug effects , Stem Cells/metabolism , Animals , Apoptosis/drug effects , Cell Transformation, Neoplastic/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/prevention & control , DNA Damage , Diet/adverse effects , Glucosinolates/administration & dosage , Glucosinolates/pharmacology , Immunity, Innate , Interleukins/biosynthesis , Intestinal Mucosa/cytology , Ligands , Mice , Mutagens/administration & dosage , Mutation/genetics , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Interleukin/metabolism , Stem Cells/cytology , T-Lymphocytes/metabolism , Interleukin-22
5.
Immunol Rev ; 286(1): 86-101, 2018 11.
Article in English | MEDLINE | ID: mdl-30294961

ABSTRACT

Innate lymphoid cells (ILC) are a recently identified group of tissue-resident innate lymphocytes. Available data support the view that ILC or their progenitors are deposited and retained in tissues early during ontogeny. Thereby, ILC become an integral cellular component of tissues and organs. Here, we will review the intriguing relationships between ILC and basic developmental and homeostatic processes within tissues. Studying ILC has already led to the appreciation of the integral roles of immune cells in tissue homeostasis, morphogenesis, metabolism, regeneration, and growth. This area of immunology has not yet been studied in-depth but is likely to reveal important networks contributing to disease tolerance and may be harnessed for future therapeutic approaches.


Subject(s)
Immunity, Innate , Immunotherapy/trends , Lymphocytes/immunology , Animals , Cell Differentiation , Cell Lineage , Cell Plasticity , Homeostasis , Humans , Immune Tolerance
6.
J Mol Med (Berl) ; 96(8): 819-829, 2018 08.
Article in English | MEDLINE | ID: mdl-29959474

ABSTRACT

IL-17A and IL-17F share the highest sequence homology of the IL-17 family and signal via the same IL-17RA/RC receptor heterodimer. To better explore the expression of these two cytokines, we used a double reporter mouse strain (IL-17DR mice), where IL-17A expressing cells are marked by enhanced green fluorescent protein (eGFP) while red fluorescence protein (RFP) reports the expression of IL-17F. In steady state, we found that Th17 and γδ T cells only expressed IL-17A, while IL-17F expression was restricted to CD8 T cells (Tc17) and innate lymphoid cells (ILC type 3) of the gut. In experimental autoimmune encephalomyelitis, the vast majority of CNS-infiltrating Th17 cells expressed IL-17A but not IL-17F. In contrast, anti-CD3-induced, TGF-ß-driven Th17 cells in the gut expressed both of these IL-17 cytokines. In line with this, in vitro differentiation of Th17 cells in the presence of IL-1ß led primarily to IL-17A expressing T cells, while TGF-ß induced IL-17F co-expressing Th17 cells. Our results suggest that expression of IL-17F is associated with non-pathogenic T cells, pointing to a differential function of IL-17A versus IL-17F. KEY MESSAGES: Naïve mice: CD4+ T cells and γδ T cells express IL-17A, and Tc17 cells express IL-17F. Gut ILC3 show differential expression of IL17A and F. Th17 differentiation with TGF-ß1 induces IL-17A and F, whereas IL-1ß induced cells expressing IL-17A. Th17 cells in EAE in CNS express IL-17A only. Gut Th17 cells induced by anti-CD3 express IL-17A and F together as skin γδ T cells of IMQ-treated mice.


Subject(s)
Gene Expression , Interleukin-17/genetics , Th17 Cells/metabolism , Animals , Biomarkers , Cell Differentiation/immunology , Disease Susceptibility , Encephalomyelitis, Autoimmune, Experimental , Immunophenotyping , Interleukin-17/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Mice, Transgenic , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th17 Cells/cytology , Th17 Cells/immunology
7.
Eur J Immunol ; 48(1): 15-31, 2018 01.
Article in English | MEDLINE | ID: mdl-29178520

ABSTRACT

Barrier surfaces of multicellular organisms are in constant contact with the environment and infractions to the integrity of epithelial surfaces is likely a frequent event. Interestingly, components of the immune system, that can be activated by environmental compounds such as the microbiota or nutrients, are interspersed among epithelial cells or directly underlie the epithelium. It is now appreciated that immune cells continuously receive and integrate signals from the environment. Curiously, such continuous reception of stimulation does not normally trigger an inflammatory response but mediators produced by immune cells in response to such signals seem to rather promote barrier integrity and repair. The molecular mediators involved in this process are poorly understood. In recent years, the cytokine interleukin-22, produced mainly by group 3 innate lymphoid cells (ILCs), has been studied as a paradigm for how immune cells can control various aspects of epithelial cell function because expression of its receptor is restricted to non-hematopoietic cells. We will summarize here the diverse roles of IL-22 for the malignant transformation of epithelial cells, for tumor growth, wound healing and tissue repair. Furthermore, we will discuss IL-22 as a potential therapeutic target.


Subject(s)
Cell Transformation, Neoplastic/pathology , Immunity, Innate/immunology , Interleukins/immunology , Intestinal Mucosa/immunology , Neoplasms/pathology , Animals , Epithelial Cells/metabolism , Epithelium/immunology , Humans , Interleukins/genetics , Intestinal Mucosa/microbiology , Lymphocytes/immunology , Microbiota/immunology , Neoplasms/immunology , Polymorphism, Single Nucleotide/genetics , Tight Junctions/immunology , Wound Healing/physiology , Interleukin-22
8.
Eur J Immunol ; 48(3): 441-453, 2018 03.
Article in English | MEDLINE | ID: mdl-29150831

ABSTRACT

Immunoglobulin E (IgE) antibodies are key mediators of allergic reactions. Due to their potentially harmful anaphylactic properties, their production is tightly regulated. The membrane-bound isoform of IgE (mIgE), which is an integral component of the B cell antigen receptor, has been shown to be critical for the regulation of IgE responses in mice. In primate species including humans, mIgE can be expressed in two isoforms that are produced by alternative splicing of the primary ε Ig heavy chain transcript, and differ in the absence or presence of an extracellular membrane-proximal domain (EMPD) consisting of 52 amino acids. However, the function of the EMPD remains unclear. Here, we demonstrate that the EMPD restricts surface expression of mIgE-containing BCRs in human and murine B cells. The EMPD does not interfere with BCR assembly but acts as an autonomous endoplasmic reticulum retention domain. Limited surface expression of EMPD-containing mIgE-BCRs caused impaired activation of intracellular signaling cascades and hence represents a regulatory mechanism that may control the production of potentially anaphylactic IgE antibodies in primate species.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin E/chemistry , Receptors, Antigen, B-Cell/chemistry , Alternative Splicing , Amino Acid Sequence , Animals , Apoptosis/immunology , B-Lymphocytes/cytology , Cell Line, Tumor , Endoplasmic Reticulum/immunology , Evolution, Molecular , Extracellular Space/immunology , Humans , Immunoglobulin E/genetics , Immunoglobulin E/immunology , Lymphocyte Activation , Male , Mice , Mice, Inbred BALB C , Primates/genetics , Primates/immunology , Protein Domains , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Sequence Homology, Amino Acid , Signal Transduction
9.
Cell Rep ; 19(7): 1431-1443, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28514662

ABSTRACT

The Ly49E receptor is preferentially expressed on murine innate-like lymphocytes, such as epidermal Vγ3 T cells, intestinal intraepithelial CD8αα+ T lymphocytes, and CD49a+ liver natural killer (NK) cells. As the latter have recently been shown to be distinct from conventional NK cells and have innate lymphoid cell type 1 (ILC1) properties, we investigated Ly49E expression on intestinal ILC populations. Here, we show that Ly49E expression is very low on known ILC populations, but it can be used to define a previously unrecognized intraepithelial innate lymphoid population. This Ly49E-positive population is negative for NKp46 and CD8αα, expresses CD49a and CD103, and requires T-bet expression and IL-15 signaling for differentiation and/or survival. Transcriptome analysis reveals a group 1 ILC gene profile, different from NK cells, iCD8α cells, and intraepithelial ILC1. Importantly, NKp46-CD8αα-Ly49E+ cells produce interferon (IFN)-γ, suggesting that this previously unrecognized population may contribute to Th1-mediated immunity.


Subject(s)
Antigens, Ly/metabolism , Epithelial Cells/metabolism , Immunity, Innate , Intestines/cytology , Lymphocytes/cytology , Lymphocytes/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Animals , Antigens, CD/metabolism , Cell Shape , Cytotoxicity, Immunologic , Epithelial Cells/cytology , Interferon-gamma/biosynthesis , Killer Cells, Natural/metabolism , Mice , NK Cell Lectin-Like Receptor Subfamily A/metabolism , Phenotype , Signal Transduction , Transcription Factors/metabolism , Transcriptome/genetics
10.
Methods Mol Biol ; 1559: 255-265, 2017.
Article in English | MEDLINE | ID: mdl-28063049

ABSTRACT

The intestinal mucosa constitutes the biggest surface area of the body. It is constantly challenged by bacteria, commensal and pathogenic, protozoa, and food-derived irritants. In order to maintain homeostasis, a complex network of signaling circuits has evolved that includes contributions of immune cells. In recent years a subset of lymphocytes, which belong to the innate immune system, has caught particular attention. These so-called innate lymphoid cells (ILC) reside within the lamina propria of the small and large intestines and rapidly respond to environmental challenges. They provide immunity to various types of infections but may also contribute to organ homeostasis as they produce factors acting on epithelial cells thereby enhancing barrier integrity. Here, we describe how these cells can be isolated from their environment and provide an in-depth protocol how to visualize the various ILC subsets by flow cytometry.


Subject(s)
Cell Separation/methods , Flow Cytometry/methods , Intestinal Mucosa/cytology , Lymphocytes/cytology , Staining and Labeling/methods , Animals , Antibodies/chemistry , Antigens, CD/genetics , Antigens, CD/immunology , Biomarkers/metabolism , Collagenases/chemistry , Deoxyribonuclease I/chemistry , Endopeptidases/chemistry , Gene Expression , Immunity, Innate , Immunity, Mucosal , Intestinal Mucosa/immunology , Lymphocytes/immunology , Mice , Mice, Inbred C57BL
11.
Immunol Lett ; 179: 9-18, 2016 11.
Article in English | MEDLINE | ID: mdl-27394700

ABSTRACT

Innate lymphoid cells (ILC) have only recently been recognized as a separate entity of the lymphoid lineage. Their subpopulations share common characteristics in terms of early development and major transcriptional circuitry with their related cousins of the T cell world. It is currently hypothesized that ILCs constitute an evolutionary older version of the lymphoid immune system. They are found at all primary entry points for pathogens such as mucosal surfaces of the lung and gastrointestinal system, the skin and the liver, which is the central contact point for pathogens that breach the intestinal barrier and enter the circulation. There, ILC contribute to the first line defense as well as to organ homeostasis. However, ILC are not only involved in classical defense tasks, but also contribute to the organogenesis of lymphoid organs as well as tissue remodeling and even stem cell regeneration. ILC may, therefore, implement different functions according to their emergence in ontogeny, their development and their final tissue location. We will review here their early development from precursors of the fetal liver and the adult bone marrow as well as their late plasticity in adaptation to their environment.


Subject(s)
Cell Plasticity , Immunity, Innate , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Precursor Cells, T-Lymphoid/immunology , Precursor Cells, T-Lymphoid/metabolism , Animals , Biomarkers , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Gene Expression Regulation, Developmental , Humans , Lymphocyte Subsets/cytology , Phenotype , Precursor Cells, T-Lymphoid/cytology , Signal Transduction , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Glia ; 64(4): 635-49, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26683584

ABSTRACT

Microglia, innate immune cells of the CNS, sense infection and damage through overlapping receptor sets. Toll-like receptor (TLR) 4 recognizes bacterial lipopolysaccharide (LPS) and multiple injury-associated factors. We show that its co-receptor CD14 serves three non-redundant functions in microglia. First, it confers an up to 100-fold higher LPS sensitivity compared to peripheral macrophages to enable efficient proinflammatory cytokine induction. Second, CD14 prevents excessive responses to massive LPS challenges via an interferon ß-mediated feedback. Third, CD14 is mandatory for microglial reactions to tissue damage-associated signals. In mice, these functions are essential for balanced CNS responses to bacterial infection, traumatic and ischemic injuries, since CD14 deficiency causes either hypo- or hyperinflammation, insufficient or exaggerated immune cell recruitment or worsened stroke outcomes. While CD14 orchestrates functions of TLR4 and related immune receptors, it is itself regulated by TLR and non-TLR systems to thereby fine-tune microglial damage-sensing capacity upon infectious and non-infectious CNS challenges.


Subject(s)
Brain Injuries/immunology , Brain Ischemia/immunology , Escherichia coli Infections/metabolism , Lipopolysaccharide Receptors/metabolism , Microglia/immunology , Stroke/immunology , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Brain/immunology , Brain/pathology , Brain Injuries/complications , Brain Injuries/pathology , Brain Ischemia/pathology , Cells, Cultured , Disease Models, Animal , Escherichia coli , Escherichia coli Infections/complications , Escherichia coli Infections/pathology , Feedback, Physiological/physiology , Infarction, Middle Cerebral Artery , Interferon-beta/metabolism , Lipopolysaccharide Receptors/genetics , Lipopolysaccharides/toxicity , Macrophages/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Neuroimmunomodulation , Stroke/pathology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
15.
Immunity ; 43(1): 146-60, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26187413

ABSTRACT

Human group 1 ILCs consist of at least three phenotypically distinct subsets, including NK cells, CD127(+) ILC1, and intraepithelial CD103(+) ILC1. In inflamed intestinal tissues from Crohn's disease patients, numbers of CD127(+) ILC1 increased at the cost of ILC3. Here we found that differentiation of ILC3 to CD127(+) ILC1 is reversible in vitro and in vivo. CD127(+) ILC1 differentiated to ILC3 in the presence of interleukin-2 (IL-2), IL-23, and IL-1ß dependent on the transcription factor RORγt, and this process was enhanced in the presence of retinoic acid. Furthermore, we observed in resection specimen from Crohn's disease patients a higher proportion of CD14(+) dendritic cells (DC), which in vitro promoted polarization from ILC3 to CD127(+) ILC1. In contrast, CD14(-) DCs promoted differentiation from CD127(+) ILC1 toward ILC3. These observations suggest that environmental cues determine the composition, function, and phenotype of CD127(+) ILC1 and ILC3 in the gut.


Subject(s)
Interleukin-12 Subunit p35/immunology , Interleukin-23 Subunit p19/immunology , Interleukin-7 Receptor alpha Subunit/immunology , Intestinal Mucosa/immunology , Lymphocytes/immunology , Animals , Cell Differentiation/immunology , Cells, Cultured , Crohn Disease/immunology , Dendritic Cells/immunology , Humans , Interleukin-1beta/immunology , Interleukin-2/immunology , Intestinal Mucosa/cytology , Killer Cells, Natural/immunology , Lipopolysaccharide Receptors/immunology , Lymphocyte Transfusion , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Receptors, Retinoic Acid/metabolism , Retinoic Acid Receptor alpha , Retinoid X Receptor gamma/metabolism , Tretinoin/pharmacology , Retinoic Acid Receptor gamma
16.
Nat Immunol ; 16(7): 698-707, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26006013

ABSTRACT

The epithelium is the main entry point for many viruses, but the processes that protect barrier surfaces against viral infections are incompletely understood. Here we identified interleukin 22 (IL-22) produced by innate lymphoid cell group 3 (ILC3) as an amplifier of signaling via interferon-λ (IFN-λ), a synergism needed to curtail the replication of rotavirus, the leading cause of childhood gastroenteritis. Cooperation between the receptor for IL-22 and the receptor for IFN-λ, both of which were 'preferentially' expressed by intestinal epithelial cells (IECs), was required for optimal activation of the transcription factor STAT1 and expression of interferon-stimulated genes (ISGs). These data suggested that epithelial cells are protected against viral replication by co-option of two evolutionarily related cytokine networks. These data may inform the design of novel immunotherapy for viral infections that are sensitive to interferons.


Subject(s)
Cytokines/immunology , Gene Expression/immunology , Interleukins/immunology , Rotavirus Infections/immunology , Animals , Caco-2 Cells , Cell Line , Chlorocebus aethiops , Cytokines/genetics , Cytokines/pharmacology , Dogs , Drug Synergism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/virology , Gene Expression/drug effects , HT29 Cells , Humans , Immunoblotting , Interleukins/genetics , Interleukins/pharmacology , Intestinal Mucosa/metabolism , Intestines/immunology , Intestines/virology , Madin Darby Canine Kidney Cells , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , Receptors, Cytokine/genetics , Receptors, Cytokine/immunology , Reverse Transcriptase Polymerase Chain Reaction , Rotavirus Infections/genetics , Rotavirus Infections/virology , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/immunology , STAT1 Transcription Factor/metabolism , Vero Cells , Interleukin-22
17.
PLoS Pathog ; 11(4): e1004782, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25849543

ABSTRACT

Epithelial cells are a major port of entry for many viruses, but the molecular networks which protect barrier surfaces against viral infections are incompletely understood. Viral infections induce simultaneous production of type I (IFN-α/ß) and type III (IFN-λ) interferons. All nucleated cells are believed to respond to IFN-α/ß, whereas IFN-λ responses are largely confined to epithelial cells. We observed that intestinal epithelial cells, unlike hematopoietic cells of this organ, express only very low levels of functional IFN-α/ß receptors. Accordingly, after oral infection of IFN-α/ß receptor-deficient mice, human reovirus type 3 specifically infected cells in the lamina propria but, strikingly, did not productively replicate in gut epithelial cells. By contrast, reovirus replicated almost exclusively in gut epithelial cells of IFN-λ receptor-deficient mice, suggesting that the gut mucosa is equipped with a compartmentalized IFN system in which epithelial cells mainly respond to IFN-λ that they produce after viral infection, whereas other cells of the gut mostly rely on IFN-α/ß for antiviral defense. In suckling mice with IFN-λ receptor deficiency, reovirus replicated in the gut epithelium and additionally infected epithelial cells lining the bile ducts, indicating that infants may use IFN-λ for the control of virus infections in various epithelia-rich tissues. Thus, IFN-λ should be regarded as an autonomous virus defense system of the gut mucosa and other epithelial barriers that may have evolved to avoid unnecessarily frequent triggering of the IFN-α/ß system which would induce exacerbated inflammation.


Subject(s)
Epithelial Cells/immunology , Intestinal Mucosa/immunology , Leukocytes/immunology , Reoviridae Infections/immunology , Animals , Cell Separation , Flow Cytometry , Humans , Immunohistochemistry , Interferon-alpha/immunology , Interferon-beta/immunology , Interferon-gamma/immunology , Mammalian orthoreovirus 3/immunology , Mice , Mice, Knockout , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...