Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 317: 120691, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36435278

ABSTRACT

Particulate Matter (PM) concentrations near highways are influenced by vehicle tailpipe and non-tailpipe emissions, other emission sources, and urban background aerosols. This study collected PM2.5 and PM10 filter samples near two southern California highways (I-5 and I-710) over two weeks in winter 2020. Samples were analyzed for chemical source markers. Mean PM2.5 and PM10 concentrations were approximately 10-15 and 30 µg/m3, respectively. Organic matter, mineral dust, and elemental carbon (EC) were the most abundant PM components. EC and polycyclic aromatic hydrocarbons at I-710 were 19-26% and 47% higher than those at the I-5 sites, respectively, likely due to a larger proportion of diesel vehicles. High correlations were found for elements with common sources, such as markers for brake wear (e.g., Fe, Ba, Cu, and Zr) and road dust (e.g., Al, Si, Ca, and Mn). Based on rubber abundances, the contributions of tire tread particles to PM2.5 and PM10 mass were approximately 8.0% at I-5 and 5.5% at I-710. Two different tire brands showed significantly different Si, Zn, carbon, and natural rubber abundances.


Subject(s)
Air Pollutants , Particulate Matter , Particulate Matter/analysis , Air Pollutants/analysis , Vehicle Emissions/analysis , Environmental Monitoring , Dust/analysis , California , Particle Size
2.
J Environ Qual ; 50(1): 278-285, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33241881

ABSTRACT

In this study, carboxyl functionalized multiwall carbon nanotubes (c-MWCNTs) in plant (lettuce [Lactuca sativa Bionda Ricciolina]) tissues were quantitatively analyzed with programmed thermal analysis coupled with a sequential digestion. Programmed thermal analysis evidenced a linear relationship between c-MWCNT-bound C and elemental C detected. A detection limit of 114-708 µg C g-1 plant tissues (dry mass) was achieved for analysis of c-MWCNTs. The method was demonstrated using the tissues of lettuce cultured hydroponically for 3 wk with c-MWCNTs at an exposure of 10 and 20 µg ml-1 . This quantitative analysis can be used to provide insights into carbon nanotube exposure through agricultural products and promote its sustainable application.


Subject(s)
Nanotubes, Carbon , Lactuca
3.
J Air Waste Manag Assoc ; 68(5): 494-510, 2018 05.
Article in English | MEDLINE | ID: mdl-29341854

ABSTRACT

The replacement of the Desert Research Institute (DRI) model 2001 with model 2015 thermal/optical analyzers (TOAs) results in continuity of the long-term organic carbon (OC) and elemental carbon (EC) database, and it adds optical information with no additional carbon analysis effort. The value of multiwavelength light attenuation is that light absorption due to black carbon (BC) can be separated from that of brown carbon (BrC), with subsequent attribution to known sources such as biomass burning and secondary organic aerosols. There is evidence of filter loading effects for the 25% of all samples with the highest EC concentrations based on the ratio of light attenuation to EC. Loading corrections similar to those used for the seven-wavelength aethalometer need to be investigated. On average, nonurban Interagency Monitoring of PROtected Visual Environments (IMPROVE) samples show higher BrC fractions of short-wavelength absorption than urban Chemical Speciation Network (CSN) samples, owing to greater influence from biomass burning and aged aerosols, as well as to higher primary BC contributions from engine exhaust at urban sites. Sequential samples taken during an Everglades National Park wildfire demonstrate the evolution from flaming to smoldering combustion, with the BrC fraction increasing as smoldering begins to dominate the fire event. IMPLICATIONS: The inclusion of seven wavelengths in thermal/optical carbon analysis of speciated PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 µm) samples allows contributions from biomass burning and secondary organic aerosols to be estimated. This separation is useful for evaluating control strategy effectiveness, identifying exceptional events, and determining natural visibility conditions.


Subject(s)
Carbon/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Soot/analysis , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Biomass , Carbon/chemistry , Particle Size , Particulate Matter/chemistry , Soot/chemistry , Vehicle Emissions/analysis , Wildfires
SELECTION OF CITATIONS
SEARCH DETAIL
...