Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Electrophoresis ; 28(3): 353-9, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17177244

ABSTRACT

Perchlorate (ClO(4) (+)) and other chlorine oxide anions were observed to complex weakly with hexamethonium (1,6-bis-(trimethylammonium)-hexane) in both aqueous and polar nonaqueous solvents. The resultant positively charged complexes were resolved by NACE using 2-propanol/acetone electrolytes prior to mass spectrometric detection using an Agilent(3D)CE system coupled to a Bruker Esquire 3000+ quadrupole IT mass detector. Using electrokinetic injection, the method detection limit for perchlorate in nonaqueous media was 10 microg/L. The isotope patterns due to the presence of (35)Cl and (37)Cl in complex mass spectra allowed for unambiguous identification of perchlorate, chlorate (ClO(3) (+)), chlorite (ClO(2) (+)), and chloride (Cl(+)) in photoreaction samples.


Subject(s)
Chlorine/chemistry , Hexamethonium/analysis , Perchlorates/analysis , Chlorates/analysis , Chlorides/analysis , Electrolytes/chemistry , Electrophoresis, Capillary , Hexamethonium/chemistry , Isotopes/chemistry , Perchlorates/chemistry , Spectrometry, Mass, Electrospray Ionization
2.
J Chromatogr A ; 1072(1): 73-82, 2005 Apr 22.
Article in English | MEDLINE | ID: mdl-15881461

ABSTRACT

An Agilent 3DCE capillary electrophoresis system using sulfobutylether-beta-cyclodextrin (SB-beta-CD)-ammonium acetate separation buffer pH 6.9 was coupled to a Bruker Esquire 3000+ quadrupole ion trap mass detector via a commercially available electrospray ionization interface with acetonitrile sheath flow. The CE-MS system was applied in negative ionization mode for the resolution and detection of nitroaromatic and polar cyclic or caged nitramine energetic materials including TNT [2,4,6-trinitrotoluene, formula mass (FW) 227.13], TNB (1,3,5-trinitrobenzene, FW 213.12), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine, FW 222.26) HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, FW 296.16), and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane, FW 438.19). The CE-MS system conformed to the high-performance liquid chromatography with ultraviolet absorbance detection (HPLC-UV) and HPLC-MS reference methods for the identification of energetic contaminants and their degradation products in soil and marine sediment samples.


Subject(s)
Electrophoresis, Capillary/methods , Environmental Pollutants/analysis , Geologic Sediments/chemistry , Nitro Compounds/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Aza Compounds/analysis , Azocines/analysis , Heterocyclic Compounds/analysis , Heterocyclic Compounds, 1-Ring/analysis , Triazines/analysis , Trinitrobenzenes/analysis , Trinitrotoluene/analysis , beta-Cyclodextrins
3.
J Chromatogr A ; 999(1-2): 17-22, 2003 May 30.
Article in English | MEDLINE | ID: mdl-12885047

ABSTRACT

A sulfobutyl ether-beta-cyclodextrin-assisted electrokinetic chromatographic method was developed to rapidly resolve and detect the cyclic nitramine explosives 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane (CL-20), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and their related degradation intermediates in environmental samples. Development of the electrophoretic method required the measurement of the aqueous solubility of CL-20 which was determined to be 3.59 +/- 0.74 mg/l at 25 degrees C (95% confidence interval, n=3). The performance of the method was then compared to results obtained from existing high-performance liquid chromatography methods including US Environmental Protection Agency method 8330.


Subject(s)
Aza Compounds/analysis , Azocines/analysis , Chromatography, High Pressure Liquid/methods , Electrophoresis, Capillary/methods , Heterocyclic Compounds, 1-Ring/analysis , Heterocyclic Compounds/analysis , Triazines/analysis , Sensitivity and Specificity , Spectrophotometry, Ultraviolet
4.
Environ Sci Technol ; 36(1): 112-8, 2002 Jan 01.
Article in English | MEDLINE | ID: mdl-11811476

ABSTRACT

To investigate their potential for phytoremediation, selected agricultural and indigenous terrestrial plants were examined fortheir capacity to accumulate and degrade the explosive octahydro-1 ,3,5,7-tetra nitro-1,3,5,7-tetrazocine (HMX). Plant tissue and soil extracts were analyzed for the presence of HMX and possible degradative metabolites using high-performance liquid chromatography with diode-array UV detection (HPLC-UV), micellar electrokinetic chromatography with diode-array UV detection (MEKC-UV), and HPLC with electrospray ionization mass spectrometry (LC-MS). The pattern of HMX accumulation for alfalfa (Medicago sativa), bush bean (Phaseolus vulgaris), canola (Brassica rapa), wheat (Triticum aestivum), and perennial ryegrass (Loliumperenne) grown in a controlled environment on contaminated soil from an anti-tank firing range was similar to that observed for plants (wild bergamot (Monarda fistulosa), western wheat grass (Agropyron smithii), brome grass (Bromus sitchensis), koeleria (Koeleria gracilis), goldenrod (Solidago sp.), blueberry (Vaccinium sp.), anemone (Anemone sp.), common thistle (Circium vulgare), wax-berry (Symphoricarpos albus), western sage (Artemisia gnaphalodes), and Drummond's milk vetch (Astragalus drummondii)) collected from the range. No direct evidence of plant-mediated HMX (bio)chemical transformation was provided by the available analytical methods. Traces of mononitroso-HMX were found in contaminated soil extracts and were also observed in leaf extracts. The dominant mechanism for HMX translocation and accumulation in foliar tissue was concluded to be aqueous transpirational flux and evaporation. The accumulation of HMX in the leaves of most of the selected species to levels significantly above soil concentration is relevant to the assessment of both phytoremediation potential and environmental risks.


Subject(s)
Azocines/pharmacokinetics , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Plants , Soil Pollutants/pharmacokinetics , Biodegradation, Environmental , Environmental Pollution/prevention & control , Risk Assessment , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...