Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Physiol Rep ; 11(20): e15842, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37849053

ABSTRACT

Bird flight muscle can lose as much as 20% of its mass during a migratory flight due to protein catabolism, and catabolism can be further exacerbated under dehydrating conditions. However, the functional consequences of exercise and environment induced protein catabolism on muscle has not been examined. We hypothesized that prolonged flight would cause a decline in muscle mass, aerobic capacity, and contractile performance. This decline would be heightened for birds placed under dehydrating environmental conditions, which typically increases lean mass losses. Yellow-rumped warblers (Setophaga coronata) were exposed to dry or humid (12 or 80% relative humidity at 18°C) conditions for up to 6 h while at rest or undergoing flight. The pectoralis muscle was sampled after flight/rest or after 24 h of recovery, and contractile properties and enzymatic capacity for aerobic metabolism was measured. There was no change in lipid catabolism or force generation of the muscle due to flight or humidity, despite reductions in pectoralis dry mass immediately post-flight. However, there was a slowing of myosin-actin crossbridge kinetics under dry compared to humid conditions. Aerobic and contractile function is largely preserved after 6 h of exercise, suggesting that migratory birds preserve energy pathways and function in the muscle.


Subject(s)
Songbirds , Animals , Songbirds/metabolism , Humidity , Muscles
2.
Proc Natl Acad Sci U S A ; 120(17): e2216016120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37068245

ABSTRACT

During migration, long-distance migratory songbirds may fly nonstop for days, whereas shorter-distance migrants complete flights of 6 to 10 h. Fat is the primary fuel source, but protein is also assumed to provide a low, consistent amount of energy for flight. However, little is known about how the use of these fuel sources differs among bird species and in response to flight duration. Current models predict that birds can fly until fat stores are exhausted, with little consideration of protein's limits on flight range or duration. We captured two related migratory species-ultra long-distance blackpoll warblers (Setophaga striata) and short-distance yellow-rumped warblers (Setophaga coronata)-during fall migration and flew them in a wind tunnel to examine differences in energy expenditure, overall fuel use, and fuel mixture. We measured fat and fat-free body mass before and after flight using quantitative magnetic resonance and calculated energy expenditure from body composition changes and doubly labeled water. Three blackpolls flew voluntarily for up to 28 h-the longest wind tunnel flight to date-and ended flights with substantial fat reserves but concave flight muscle, indicating that protein loss, rather than fat, may actually limit flight duration. Interestingly, while blackpolls had significantly lower mass-specific metabolic power in flight than that of yellow-rumped warblers and fuel use was remarkably similar in both species, with consistent fat use but exceptionally high rates of protein loss at the start of flight that declined exponentially over time. This suggests that protein may be a critical, dynamic, and often overlooked fuel for long-distance migratory birds.


Subject(s)
Passeriformes , Songbirds , Animals , Songbirds/physiology , Body Composition , Proteins/metabolism , Energy Metabolism , Animal Migration/physiology , Flight, Animal/physiology
3.
J Morphol ; 283(12): 1483-1504, 2022 12.
Article in English | MEDLINE | ID: mdl-36062802

ABSTRACT

Nectar-feeding birds provide an excellent system in which to examine form-function relationships over evolutionary time. There are many independent origins of nectarivory in birds, and nectar feeding is a lifestyle with many inherent biophysical constraints. We review the morphology and function of the feeding apparatus, the locomotor apparatus, and the digestive and renal systems across avian nectarivores with the goals of synthesizing available information and identifying the extent to which different aspects of anatomy have morphologically and functionally converged. In doing so, we have systematically tabulated the occurrence of putative adaptations to nectarivory across birds and created what is, to our knowledge, the first comprehensive summary of adaptations to nectarivory across body systems and taxa. We also provide the first phylogenetically informed estimate of the number of times nectarivory has evolved within Aves. Based on this synthesis of existing knowledge, we identify current knowledge gaps and provide suggestions for future research questions and methods of data collection that will increase our understanding of the distribution of adaptations across bodily systems and taxa, and the relationship between those adaptations and ecological and evolutionary factors. We hope that this synthesis will serve as a landmark for the current state of the field, prompting investigators to begin collecting new data and addressing questions that have heretofore been impossible to answer about the ecology, evolution, and functional morphology of avian nectarivory.


Subject(s)
Birds , Plant Nectar , Animals , Birds/anatomy & histology , Phylogeny
4.
Sci Rep ; 12(1): 11470, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794224

ABSTRACT

Methylmercury (MeHg) is a global pollutant that can cause metabolic disruptions in animals and thereby potentially compromise the energetic capacity of birds for long-distance migration, but its effects on avian lipid metabolism pathways that support endurance flight and stopover refueling have never been studied. We tested the effects of short-term (14-d), environmentally relevant (0.5 ppm) dietary MeHg exposure on lipid metabolism markers in the pectoralis and livers of yellow-rumped warblers (Setophaga coronata) that were found in a previous study to have poorer flight endurance in a wind tunnel than untreated conspecifics. Compared to controls, MeHg-exposed birds displayed lower muscle aerobic and fatty acid oxidation capacity, but similar muscle glycolytic capacity, fatty acid transporter expression, and PPAR expression. Livers of exposed birds indicated elevated energy costs, lower fatty acid uptake capacity, and lower PPAR-γ expression. The lower muscle oxidative enzyme capacity of exposed birds likely contributed to their weaker endurance in the prior study, while the metabolic changes observed in the liver have potential to inhibit lipogenesis and stopover refueling. Our findings provide concerning evidence that fatty acid catabolism, synthesis, and storage pathways in birds can be dysregulated by only brief exposure to MeHg, with potentially significant consequences for migratory performance.


Subject(s)
Mercury , Methylmercury Compounds , Songbirds , Animals , Fatty Acids , Lipid Metabolism , Liver , PPAR gamma , Pectoralis Muscles
5.
J Exp Biol ; 225(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-35048977

ABSTRACT

Nectar-feeding birds employ unique mechanisms to collect minute liquid rewards hidden within floral structures. In recent years, techniques developed to study drinking mechanisms in hummingbirds have prepared the groundwork for investigating nectar feeding across birds. In most avian nectarivores, fluid intake mechanisms are understudied or simply unknown beyond hypotheses based on their morphological traits, such as their tongues, which are semi-tubular in sunbirds, frayed-tipped in honeyeaters and brush-tipped in lorikeets. Here, we use hummingbirds as a case study to identify and describe the proposed drinking mechanisms to examine the role of those peculiar traits, which will help to disentangle nectar-drinking hypotheses for other groups. We divide nectar drinking into three stages: (1) liquid collection, (2) offloading of aliquots into the mouth and (3) intraoral transport to where the fluid can be swallowed. Investigating the entire drinking process is crucial to fully understand how avian nectarivores feed; nectar-feeding not only involves the collection of nectar with the tongue, but also includes the mechanisms necessary to transfer and move the liquid through the bill and into the throat. We highlight the potential for modern technologies in comparative anatomy [such as microcomputed tomography (µCT) scanning] and biomechanics (such as tracking BaSO4-stained nectar via high-speed fluoroscopy) to elucidate how disparate clades have solved this biophysical puzzle through parallel, convergent or alternative solutions.


Subject(s)
Feeding Behavior , Passeriformes , Animals , Biomechanical Phenomena , Plant Nectar , X-Ray Microtomography
6.
Proc Biol Sci ; 286(1909): 20190859, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31455196

ABSTRACT

Migratory birds use protein as a fuel source during flight, but the mechanisms and benefits of protein catabolism during migration are poorly understood. The tissue-specific turnover rate hypothesis proposes that lean mass loss depends solely on the constitutive rate of protein degradation for a given tissue, and is therefore independent of metabolic rate or environmental stimuli. However, it has been demonstrated that environmental stressors such as humidity affect the rate of lean mass catabolism during flight, a finding that seemingly contradicts the tissue-specific turnover rate hypothesis. In order to resolve this, we placed migratory Swainson's thrushes in either high (HEWL) or low (LEWL) evaporative water loss conditions at rest and while undergoing simulated migratory flight at 8 m s-1 in a wind tunnel to test the impact of both environmental stressors and metabolic rate on the rate of protein breakdown. The total quantity and rate of lean mass loss was not different between flight and rest birds, but was affected by humidity condition, with HEWL losing significantly more lean mass. These results show that the rate of protein breakdown in migratory birds is independent of metabolic rate, but it can be augmented in response to environmental stressors.


Subject(s)
Humidity , Songbirds/metabolism , Animal Migration , Animals , Flight, Animal
7.
Article in English | MEDLINE | ID: mdl-31446070

ABSTRACT

Physiological adaptations that enhance flux through the sugar oxidation cascade permit hummingbirds to rapidly switch between burning lipids when fasted to burning ingested sugars when fed. Hummingbirds may be able to exert control over the timing and extent of use of ingested sugars by varying digestive rates when under pressure to accumulate energy stores or acquire energy in response to heightened energy demands. We hypothesized that hummingbirds would modulate the timing of a switch to reliance on ingested sugars differently when facing distinct energetic demands (cool versus warm ambient temperatures). The timing of the oxidation of a single nectar meal to fuel metabolism was assessed by open-flow respirometry, while the time to first excretion following the meal was used as a proxy for digestive throughput time. As predicted, birds showed a more rapid switch in respiratory exchange ratio (RER = rate of O2 consumption/CO2 production) and excreted earlier when held at cool temperatures compared to warm. In both cases, RER peaked barely above 1.0 indicating ingested sugar fueled ≈100% of resting metabolism. Our findings suggest that energetic demands modulate the rate of fuel switching through shifts of the sugar oxidation cascade. The speed of this shift may involve decreases in gut passage times which have previously been thought to be inflexible, or may be caused by changes in circulation as a result of low ambient temperature.


Subject(s)
Birds/metabolism , Energy Metabolism/physiology , Feeding Behavior/physiology , Flight, Animal/physiology , Animals , Birds/physiology , Cold Temperature , Oxidation-Reduction , Plant Nectar/metabolism , Temperature
8.
Proc Biol Sci ; 285(1873)2018 02 28.
Article in English | MEDLINE | ID: mdl-29491168

ABSTRACT

Wing kinematics and morphology are influential upon the aerodynamics of flight. However, there is a lack of studies linking these variables to metabolic costs, particularly in the context of morphological adaptation to body size. Furthermore, the conversion efficiency from chemical energy into movement by the muscles (mechanochemical efficiency) scales with mass in terrestrial quadrupeds, but this scaling relationship has not been demonstrated within flying vertebrates. Positive scaling of efficiency with body size may reduce the metabolic costs of flight for relatively larger species. Here, we assembled a dataset of morphological, kinematic, and metabolic data on hovering hummingbirds to explore the influence of wing morphology, efficiency, and mass on hovering metabolic rate (HMR). We hypothesize that HMR would decline with increasing wing size, after accounting for mass. Furthermore, we hypothesize that efficiency will increase with mass, similarly to other forms of locomotion. We do not find a relationship between relative wing size and HMR, and instead find that the cost of each wingbeat increases hyperallometrically while wingbeat frequency declines with increasing mass. This suggests that increasing wing size is metabolically favourable over cycle frequency with increasing mass. Further benefits are offered to larger hummingbirds owing to the positive scaling of efficiency.


Subject(s)
Birds/anatomy & histology , Birds/physiology , Body Size , Energy Metabolism , Flight, Animal , Animals , Biomechanical Phenomena , Brazil
9.
Nat Commun ; 8(1): 1047, 2017 10 19.
Article in English | MEDLINE | ID: mdl-29051535

ABSTRACT

Flying animals of different masses vary widely in body proportions, but the functional implications of this variation are often unclear. We address this ambiguity by developing an integrative allometric approach, which we apply here to hummingbirds to examine how the physical environment, wing morphology and stroke kinematics have contributed to the evolution of their highly specialised flight. Surprisingly, hummingbirds maintain constant wing velocity despite an order of magnitude variation in body weight; increased weight is supported solely through disproportionate increases in wing area. Conversely, wing velocity increases with body weight within species, compensating for lower relative wing area in larger individuals. By comparing inter- and intraspecific allometries, we find that the extreme wing area allometry of hummingbirds is likely an adaptation to maintain constant burst flight capacity and induced power requirements with increasing weight. Selection for relatively large wings simultaneously maximises aerial performance and minimises flight costs, which are essential elements of humming bird life history.


Subject(s)
Birds/physiology , Flight, Animal , Wings, Animal/physiology , Animals , Biomechanical Phenomena , Birds/anatomy & histology , Birds/classification , Phylogeography , Wings, Animal/anatomy & histology
10.
J Comp Physiol B ; 187(1): 165-182, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27431590

ABSTRACT

Hummingbirds differentially modify flight kinematics in response to the type of challenge imposed. Weightlifting is associated with increases in stroke amplitude (the angle swept by the wings) to increase the angular velocity of the wings and generate the requisite lift, but only up to 160°. Conversely, flight in hypodense air is accomplished by increasing the angular velocity of the wing through increases in wingbeat frequency and stroke amplitudes, with larger increases in amplitude than seen in weightlifting flight. The kinematic differences between these two challenges may be facilitated by the lower energetic costs associated with overcoming drag and inertial forces over the wing during hypodense flight. Thus, we hypothesized that energetic expenditure is what limits the kinematics of weightlifting flight, with lower air densities permitting increases in angular velocity at comparatively lower costs. To explore the kinematic and energetic effects of air density and weightlifting on hovering flight performance, video and respirometric recordings of weightlifting were performed on four species of hummingbirds across an elevational gradient. Contrary to our hypothesis, wingbeat frequency did not vary due to elevation. Instead, wingbeat frequency seems to increase depending on the power requirements for sustaining hovering flight. Furthermore, metabolic rates during hovering increased with angular velocity alone, independent of elevation. Thus, it appears that the differential responses to flight challenges are not driven by variation in the flight media.


Subject(s)
Birds/physiology , Flight, Animal/physiology , Wings, Animal/physiology , Altitude , Animals , Biomechanical Phenomena , Body Weight , Carbon Dioxide/metabolism , Energy Metabolism , Male , Oxygen Consumption
11.
Article in English | MEDLINE | ID: mdl-22902863

ABSTRACT

We examined the metabolic responses of the South American frog, Ceratophrys ornata, to laboratory-induced estivation. Whole-animal and mass-specific oxygen consumption rates (VO(2)) did not change during fasting or 56days of estivation, despite observing significant decreases in body mass. The maintenance of mass-specific metabolic rate at routine levels during estivation suggests that metabolic rate suppression is not a major response to estivation in this species. There was a significant decline in liver glycogen and a loss of adipose tissue mass during estivation, suggesting that both carbohydrate and lipid pathways are used to fuel metabolism during estivation. The activity of pyruvate dehydrogenase, an important regulator of carbohydrate oxidation, and carnitine palmitoyltransferase and 3-hydroxyacyl-CoA dehydrogenase, regulators of lipid oxidation, showed no significant change in activity in liver, heart, and muscle between estivating and active frogs. There was an increase in plasma osmolality, which is characteristic of estivating animals. Overall, our metabolic analysis of estivation in C. ornata indicates that this species does not employ a dramatic suppression metabolic rate to survive dehydration stress and that both endogenous carbohydrates and lipids are used as metabolic fuels.


Subject(s)
Anura/metabolism , Estivation , Acetyl Coenzyme A/metabolism , Animals , Anura/anatomy & histology , Anura/blood , Anura/physiology , Carbohydrate Metabolism , Carnitine/metabolism , Citrate (si)-Synthase/metabolism , Fatty Acids/metabolism , Hematocrit , Organ Size , Osmolar Concentration , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...