Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Anaesth ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38296752

ABSTRACT

BACKGROUND: Pharmaceuticals account for 19-32% of healthcare greenhouse gas (GHG) emissions. Paracetamol is a common perioperative analgesic agent. We estimated GHG emissions associated with i.v. and oral formulations of paracetamol used in the perioperative period. METHODS: Life-cycle assessment of GHG emissions (expressed as carbon dioxide equivalents CO2e) of i.v. and oral paracetamol preparations was performed. Perioperative paracetamol prescribing practices and costs for 26 hospitals in USA, UK, and Australia were retrospectively audited. For those surgical patients for whom oral formulations were indicated, CO2e and costs of actual prescribing practices for i.v. or oral doses were compared with optimal oral prescribing. RESULTS: The carbon footprint for a 1 g dose was 38 g CO2e (oral tablet), 151 g CO2e (oral liquid), and 310-628 g CO2e (i.v. dependent on type of packaging and administration supplies). Of the eligible USA patients, 37% received paracetamol (67% was i.v.). Of the eligible UK patients, 85% received paracetamol (80% was i.v.). Of the eligible Australian patients, 66% received paracetamol (70% was i.v.). If the emissions mitigation opportunity from substituting oral tablets for i.v. paracetamol is extrapolated to USA, UK, and Australia elective surgical encounters in 2019, ∼5.7 kt CO2e could have been avoided and would save 98.3% of financial costs. CONCLUSIONS: Intravenous paracetamol has 12-fold greater life-cycle carbon emissions than the oral tablet form. Glass vials have higher greenhouse gas emissions than plastic vials. Intravenous administration should be reserved for cases in which oral formulations are not feasible.

3.
Med Teach ; 42(10): 1097-1101, 2020 10.
Article in English | MEDLINE | ID: mdl-32734808

ABSTRACT

A number of planetary boundaries, including climate change as a result of greenhouse gas emissions, has already been exceeded. This situation has deleterious consequences for public health. Paradoxically, 4.4% of these emissions are attributable to the healthcare sector. These problems have not been sufficiently acknowledged in health professions curricula. This paper addresses two main issues, humanistic learning and the application of knowledge acquisition to clinical practice. Humanistic learning principles can be used to emphasize learner-centered approaches, including knowledge acquisition and reflection to increase self-awareness. Applying humanistic principles in everyday life and clinical practice can encourage stewardship, assisting students to become agents for change. In terms of knowledge and skills application to clinical practice, an overview of varied and novel approaches of how sustainable education can be integrated at different stages of training across several health care professions is provided. The Health and Environment Adaptive Response Taskforce (HEART) platform as an example of creating empowered learners, the NurSusTOOLKIT, a multi-disciplinary collaboration offering free adaptable educational resources for educators and the Greener Anaesthesia and Sustainability Project (GASP), an example of bridging the transition to clinical practice, are described.


Subject(s)
Curriculum , Learning , Delivery of Health Care , Health Occupations , Humans , Professional Practice
SELECTION OF CITATIONS
SEARCH DETAIL
...