Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pain ; 165(4): 922-940, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37963235

ABSTRACT

ABSTRACT: Chronic pain associated with osteoarthritis (OA) remains an intractable problem with few effective treatment options. New approaches are needed to model the disease biology and to drive discovery of therapeutics. We present an in vitro model of OA pain, where dorsal root ganglion (DRG) sensory neurons were sensitized by a defined mixture of disease-relevant inflammatory mediators, here called Sensitizing PAin Reagent Composition or SPARC. Osteoarthritis-SPARC components showed synergistic or additive effects when applied in combination and induced pain phenotypes in vivo. To measure the effect of OA-SPARC on neural firing in a scalable format, we used a custom system for high throughput all-optical electrophysiology. This system enabled light-based membrane voltage recordings from hundreds of neurons in parallel with single cell and single action potential resolution and a throughput of up to 500,000 neurons per day. A computational framework was developed to construct a multiparameter OA-SPARC neuronal phenotype and to quantitatively assess phenotype reversal by candidate pharmacology. We screened ∼3000 approved drugs and mechanistically focused compounds, yielding data from over 1.2 million individual neurons with detailed assessment of functional OA-SPARC phenotype rescue and orthogonal "off-target" effects. Analysis of confirmed hits revealed diverse potential analgesic mechanisms including ion channel modulators and other mechanisms including MEK inhibitors and tyrosine kinase modulators. Our results suggest that the Raf-MEK-ERK axis in DRG neurons may integrate the inputs from multiple upstream inflammatory mediators found in osteoarthritis patient joints, and MAPK pathway activation in DRG neurons may contribute to chronic pain in patients with osteoarthritis.


Subject(s)
Chronic Pain , Osteoarthritis , Humans , Chronic Pain/complications , Osteoarthritis/complications , Sensory Receptor Cells/physiology , Electrophysiology , Inflammation Mediators/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Ganglia, Spinal/metabolism
2.
Front Mol Neurosci ; 15: 896320, 2022.
Article in English | MEDLINE | ID: mdl-35860501

ABSTRACT

Optogenetic assays provide a flexible, scalable, and information rich approach to probe compound effects for ion channel drug targets in both heterologous expression systems and associated disease relevant cell types. Despite the potential utility and growing adoption of optogenetics, there remains a critical need for compatible platform technologies with the speed, sensitivity, and throughput to enable their application to broader drug screening applications. To address this challenge, we developed the SwarmTM, a custom designed optical instrument for highly parallelized, multicolor measurements in excitable cells, simultaneously recording changes in voltage and calcium activities at high temporal resolution under optical stimulation. The compact design featuring high power LEDs, large numerical aperture optics, and fast photodiode detection enables all-optical individual well readout of 24-wells simultaneously from multi-well plates while maintaining sufficient temporal resolution to probe millisecond response dynamics. The Swarm delivers variable intensity blue-light optogenetic stimulation to enable membrane depolarization and red or lime-light excitation to enable fluorescence detection of the resulting changes in membrane potential or calcium levels, respectively. The Swarm can screen ~10,000 wells/day in 384-well format, probing complex pharmacological interactions via a wide array of stimulation protocols. To evaluate the Swarm screening system, we optimized a series of heterologous optogenetic spiking HEK293 cell assays for several voltage-gated sodium channel subtypes including Nav1.2, Nav1.5, and Nav1.7. The Swarm was able to record pseudo-action potentials stably across all 24 objectives and provided pharmacological characterization of diverse sodium channel blockers. We performed a Nav1.7 screen of 200,000 small molecules in a 384-well plate format with all 560 plates reaching a Z' > 0.5. As a demonstration of the versatility of the Swarm, we also developed an assay measuring cardiac action potential and calcium waveform properties simultaneously under paced conditions using human induced pluripotent stem (iPS) cell-derived cardiomyocytes as an additional counter screen for cardiac toxicity. In summary, the Swarm is a novel high-throughput all-optical system capable of collecting information-dense data from optogenetic assays in both heterologous and iPS cell-derived models, which can be leveraged to drive diverse therapeutic discovery programs for nervous system disorders and other disease areas involving excitable cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...