Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 120(21): 4756-66, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27137845

ABSTRACT

As water is an essential ingredient in protein structure, dynamics, and functioning, knowledge of its behavior near proteins is crucial. We investigate water dynamics around bovine α-lactalbumin by combining molecular dynamics simulations with polarization-resolved femtosecond infrared (fs-IR) spectroscopy. We identify slowly reorienting surface waters and establish their hydrogen-bond lifetime and reorientation dynamics, which we compare to the experimentally measured anisotropy decay. The calculated number of slow surface waters is in reasonable agreement with the results of fs-IR experiments. While surface waters form fewer hydrogen bonds than the bulk, within the hydration layer water is slower when donating more hydrogen bonds. At concave sites the protein-water hydrogen bonds break preferably via translational diffusion rather than via a hydrogen-bond jump mechanism. Water molecules reorient slower near these sites than at convex water-exposed sites. Protein misfolding leads to an increased exposure of hydrophobic groups, inducing relatively faster surface water dynamics. Nevertheless, the larger exposed surface slows down a larger amount of water. While for native proteins hydrating water is slower near hydrophobic than near hydrophilic residues, mainly due to stronger confinement, misfolding causes hydrophobic water to reorient relatively faster because exposure of hydrophobic groups destroys concave protein cavities with a large excluded volume.


Subject(s)
Lactalbumin/chemistry , Water/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Lactalbumin/metabolism , Molecular Dynamics Simulation , Protein Folding , Spectrophotometry, Infrared , Water/metabolism
2.
J Phys Chem B ; 119(16): 5228-39, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25801861

ABSTRACT

We study the vibrational relaxation dynamics and the reorientation dynamics of HDO molecules in binary water-dimethyl sulfoxide (DMSO) and water-acetone mixtures with polarization-resolved femtosecond mid-infrared spectroscopy. For low solute concentrations we observe a slowing down of the reorientation of part of the water molecules that hydrate the hydrophobic methyl groups of DMSO and acetone. For water-DMSO mixtures the fraction of slowed-down water molecules rises much steeper with solute concentration than for water-acetone mixtures, showing that acetone molecules show significant aggregation already at low concentrations. At high solute concentrations, the vibrational and reorientation dynamics of both water-DMSO and water-acetone mixtures show a clear distinction between the dynamics of water molecules donating hydrogen bonds to other water molecules and the dynamics of water donating a hydrogen bond to the S═O/C═O group of the solute. For water-DMSO mixtures both types of water molecules show a very slow reorientation. The water molecules forming hydrogen bonds to the S═O group reorient with a time constant that decreases from 46 ± 14 ps at XDMSO = 0.33 to 13 ± 2 ps at XDMSO = 0.95. The water molecules forming hydrogen bonds to the C═O group of acetone show a much faster reorientation with a time constant that decreases from 6.1 ± 0.2 ps at Xacet = 0.3 to 2.96 ± 0.05 ps at Xacet = 0.9. The large difference in reorientation time constant of the solute-bound water for DMSO and acetone can be explained from the fact that the hydrogen bond between water and the S═O group of DMSO is much stronger than the hydrogen bond between water and the C═O group of acetone. We attribute the strongly different behavior of water in DMSO-rich and acetone-rich mixtures to their difference in molecular shape.

3.
Phys Chem Chem Phys ; 17(13): 8449-58, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25652227

ABSTRACT

We study the effect of the sugars glucose, trehalose and sorbitol on the reorientation dynamics of water molecules, using polarization-resolved femtosecond infrared spectroscopy. We find that at all sugar concentrations the water dynamics can be described by a single reorientation time constant. With increasing carbohydrate concentration, the water reorientation time constant increases from 2.5 picoseconds to a value of about 15 picoseconds. The slowing down of the water dynamics is strongest for trehalose, followed by glucose and sorbitol.


Subject(s)
Carbohydrates/chemistry , Molecular Dynamics Simulation , Water/chemistry , Glucose/chemistry , Solutions/chemistry , Sorbitol/chemistry , Spectrophotometry, Infrared , Time Factors , Trehalose/chemistry
4.
J Chem Phys ; 140(23): 234503, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24952548

ABSTRACT

The dynamics of water in aqueous solutions of glucose have been investigated using polarization-resolved femtosecond infrared spectroscopy of the hydroxyl stretch vibrations of water and glucose. Using reference measurements on solutions of glucose in dimethylsulfoxide and a spectral decomposition model, we are able to distinguish the reorientation dynamics of the glucose and water hydroxyl groups. We find that the water reorientation dynamics strongly slow down in the presence of glucose.


Subject(s)
Anisotropy , Glucose/chemistry , Water/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Solutions/chemistry , Spectrophotometry, Infrared , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...