Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioanalysis ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629337

ABSTRACT

Ligand-binding assays (LBAs) rely on the reversible, noncovalent binding between the analyte of interest and the assay reagents, and understanding their dynamic equilibrium is key to building robust LBA methods. Although the dynamic interplay of free and bound fractions can be calculated using mathematical models, these are not routinely applied. This approach is costly in terms of both assay development time and reagents, and can result in an under-exploration of the possible parameter combinations. Therefore, we have created a user-friendly simulation tool to facilitate LBA development (the BiSim Tool). We describe the models driving the mathematical simulations and the main features of our software solution by means of case studies, illustrating the tool's value in drug development. To support drug development for all patients worldwide, the BiSim Tool is now available as an open-source code project and as a free web-based tool at https://proteinbindingsimulation.shinyapps.io/BiSim-ProteinBindingSimulation [1].

2.
Cell Death Differ ; 24(7): 1184-1195, 2017 07.
Article in English | MEDLINE | ID: mdl-28498367

ABSTRACT

Necroptosis is a form of regulated cell death, which is induced by ligand binding to TNF family death domain receptors, pattern recognizing receptors and virus sensors. The common feature of these receptor systems is the implication of proteins, which contain a receptor interaction protein kinase (RIPK) homology interaction motif (RHIM) mediating recruitment and activation of receptor-interacting protein kinase 3 (RIPK3), which ultimately activates the necroptosis executioner mixed lineage kinase domain-like (MLKL). In case of the TNF family members, the initiator is the survival- and cell death-regulating RIPK1 kinase, in the case of Toll-like receptor 3/4 (TLR3/4), a RHIM-containing adaptor, called TRIF, while in the case of Z-DNA-binding protein ZBP1/DAI, the cytosolic viral sensor itself contains a RHIM domain. In this review, we discuss the different protein complexes that serve as nucleation platforms for necroptosis and the mechanism of execution of necroptosis. Transgenic models (knockout, kinase-dead knock-in) and pharmacologic inhibition indicate that RIPK1, RIPK3 or MLKL are implicated in many inflammatory, degenerative and infectious diseases. However, the conclusion of necroptosis being solely involved in the etiology of diseases is blurred by the pleiotropic roles of RIPK1 and RIPK3 in other cellular processes such as apoptosis and inflammasome activation.


Subject(s)
Apoptosis , Amyloid/metabolism , Animals , Humans , Models, Biological , Necrosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction
3.
Nat Protoc ; 11(8): 1444-54, 2016 08.
Article in English | MEDLINE | ID: mdl-27414760

ABSTRACT

Several cell death assays have been developed based on a single biochemical parameter such as caspase activation or plasma membrane permeabilization. Our fluorescent apoptosis/necrosis (FAN) assay directly measures cell death and distinguishes between caspase-dependent apoptosis and caspase-independent necrosis of cells grown in any multiwell plate. Cell death is monitored in standard growth medium as an increase in fluorescence intensity of a cell-impermeable dye (SYTOX Green) after plasma membrane disintegration, whereas apoptosis is detected through caspase-mediated release of a fluorophore from its quencher (DEVD-amc). The assay determines the normalized percentage of dead cells and caspase activation per condition as an end-point measurement or in real time (automated). The protocol can be applied to screen drugs, proteins or siRNAs for interference with cell death while simultaneously detecting cell death modality switching between apoptosis and necrosis. Initial preparation may take up to 5 d, but the typical hands-on time is ∼2 h.


Subject(s)
Cell Death , Fluorometry/methods , Animals , Cell Line , Humans , Mice , Staining and Labeling , Time Factors
4.
Biotechniques ; 60(5): 252-9, 2016.
Article in English | MEDLINE | ID: mdl-27177818

ABSTRACT

In contrast to most common gene delivery techniques, lentiviral vectors allow targeting of almost any mammalian cell type, even non-dividing cells, and they stably integrate in the genome. Therefore, these vectors are a very powerful tool for biomedical research. Here we report the generation of a versatile new set of 22 lentiviral vectors with broad applicability in multiple research areas. In contrast to previous systems, our platform provides a choice between constitutive and/or conditional expression and six different C-terminal fusions. Furthermore, two compatible selection markers enable the easy derivation of stable cell lines co-expressing differently tagged transgenes in a constitutive or inducible manner. We show that all of the vector features are functional and that they contribute to transgene overexpression in proof-of-principle experiments.


Subject(s)
Genetic Engineering/methods , Genetic Vectors/genetics , Lentivirus/genetics , Recombinant Proteins/genetics , Transgenes/genetics , Transduction, Genetic
5.
Blood ; 127(1): 139-48, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26463424

ABSTRACT

Maintaining cellular redox balance is vital for cell survival and tissue homoeostasis because imbalanced production of reactive oxygen species (ROS) may lead to oxidative stress and cell death. The antioxidant enzyme glutathione peroxidase 4 (Gpx4) is a key regulator of oxidative stress-induced cell death. We show that mice with deletion of Gpx4 in hematopoietic cells develop anemia and that Gpx4 is essential for preventing receptor-interacting protein 3 (RIP3)-dependent necroptosis in erythroid precursor cells. Absence of Gpx4 leads to functional inactivation of caspase 8 by glutathionylation, resulting in necroptosis, which occurs independently of tumor necrosis factor α activation. Although genetic ablation of Rip3 normalizes reticulocyte maturation and prevents anemia, ROS accumulation and lipid peroxidation in Gpx4-deficient cells remain high. Our results demonstrate that ROS and lipid hydroperoxides function as not-yet-recognized unconventional upstream signaling activators of RIP3-dependent necroptosis.


Subject(s)
Apoptosis , Erythroid Cells/pathology , Glutathione Peroxidase/physiology , Necrosis , Oxidative Stress , Receptor-Interacting Protein Serine-Threonine Kinases/physiology , Animals , Blotting, Western , Cell Differentiation , Cell Proliferation , Cells, Cultured , Erythroid Cells/metabolism , Flow Cytometry , Humans , Immunoenzyme Techniques , Mice , Mice, Knockout , Phospholipid Hydroperoxide Glutathione Peroxidase , Reactive Oxygen Species/metabolism
6.
Methods ; 61(2): 117-29, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23473780

ABSTRACT

Cell death research during the last decades has revealed many molecular signaling cascades, often leading to distinct cell death modalities followed by immune responses. For historical reasons, the prototypic and best characterized cell death modes are apoptosis and necrosis (dubbed necroptosis, to indicate that it is regulated). There is mounting evidence for the interplay between cell death modalities and their redundant action when one of them is interfered with. This increase in cell death research points to the need for characterizing cell death pathways by different approaches at the biochemical, cellular and if possible, physiological level. In this review we present a selection of techniques to detect cell death and to distinguish necrosis from apoptosis. The distinction should be based on pharmacologic and transgenic approaches in combination with several biochemical and morphological criteria. A particular problem in defining necrosis is that in the absence of phagocytosis, apoptotic cells become secondary necrotic and develop morphologic and biochemical features of primary necrosis.


Subject(s)
Apoptosis/genetics , Cell Membrane/metabolism , Fibroblasts/metabolism , Macrophages/metabolism , Animals , Caspases/genetics , Caspases/metabolism , Cell Line , Cell Membrane/ultrastructure , DNA Fragmentation , Enzyme Activation , Fibroblasts/ultrastructure , Flow Cytometry , Macrophages/ultrastructure , Mice , Microscopy , Necrosis/genetics , Necrosis/pathology , Phagocytosis , Time-Lapse Imaging
7.
Anticancer Drugs ; 23(9): 883-96, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22797176

ABSTRACT

Sesquiterpene lactones (SLs) constitute a large and diverse group of biologically active plant compounds that possess anti-inflammatory and antitumor activity. The subclass germacranolides is one of the major groups of SLs. It includes parthenolide, a highly cytotoxic SL that is being tested in clinical trials as an anti-cancer agent. In this review, we focus on SL antitumor activity related to cell-cycle arrest, differentiation, apoptosis induction through the intrinsic pathway, and sensitization of the extrinsic pathway. We also address the regression of tumors in response to cotreatment with conventional chemotherapeutics. We review the nuclear factor-κB-targeted anti-inflammatory activity in vitro and in vivo and relate it to the SL structural features involved in the molecular mechanisms. It is obvious that SLs are emerging as promising anticancer agents, but more investigations are required to fully understand the molecular mechanisms of known SLs in different cell death modalities and how these mechanisms contribute toward the potent antitumor and anti-inflammatory activities of SLs.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antineoplastic Agents, Phytogenic/therapeutic use , Neoplasms/drug therapy , Sesquiterpenes/therapeutic use , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Humans , Molecular Structure , NF-kappa B/antagonists & inhibitors , Neoplasms/immunology , Neoplasms/pathology , Plants, Medicinal , Quantitative Structure-Activity Relationship , Sesquiterpenes/administration & dosage , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...