Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Chemosphere ; 145: 495-507, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26701684

ABSTRACT

The results on elemental composition of aerosol (PM10) sampled during 2011 in Piedmont region (Italy) are interpreted using meteorological data, Enrichment Factors (EF), chemometric processing by Principal Component Analysis (PCA), Factor Analysis (FA) and Hierarchical Cluster Analysis (HCA). Daily concentrations of about 30 elements were measured using HR-ICP-MS in five monitoring sites. A clear seasonal pattern, with higher concentrations in autumn and winter, was observed, particularly in the urban sites. Levels of As, Cd, Ni and Pb in most of the samples were within the limits imposed by the European legislation. Spatial differences in PM10 and metal concentrations were significant, with rural and urban sites showing different metal patterns, indicating different sources. K and Ca were used, respectively, as marker of biomass burning and industrial marker (cement plant); EFs showed that Ca was enriched just in one area and K was enriched only in the winter period considered and in some stations. Data analysis through PCA, FA and HCA allowed us to identify correlations among the investigated elements and similarities between sampling sites in order to individuate specific emission sources, such as non-exhaust vehicle emission.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Particulate Matter/analysis , Trace Elements/analysis , Vehicle Emissions/analysis , Aerosols , Cluster Analysis , Humans , Industry , Italy , Particle Size , Principal Component Analysis , Rural Health , Seasons , Urban Health
2.
Chemosphere ; 90(10): 2578-88, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23232046

ABSTRACT

The temporal trends of major, minor and trace elements in the total atmospheric particulate sampled in the urban area of Turin (Italy) were determined for the following years: 1976, 1986, 1996 and 2001. The wavelength dispersive X-ray fluorescence (WD-XRF) technique was adopted to determine the concentrations of Ba, Br, Ca, Cl, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, S, Ti and Zn. A smaller number of samples was also analysed by ICP atomic emission spectroscopy (ICP-AES) and the results were compared with those obtained by WD-XRF to confirm their validity. A clear seasonal pattern with higher concentrations of the aforementioned elements in the cold periods was observed. Moreover, a change in the chemical composition of atmospheric particulate matter was evidenced, particularly between the first (1976 and 1986) and the last (1996 and 2001) years. This change can be attributed both to the greater contribution of Pb and Br to atmospheric pollution in the past and, in recent years, to the higher level of pollutants associated with increased vehicular traffic and industrial activities. The application of chemometric techniques (Principal Component Analysis and Cluster Analysis) allowed us to speculate about the main emitting sources influencing the total atmospheric particulate in these years.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Particulate Matter/analysis , Cluster Analysis , Italy , Principal Component Analysis , Spectrometry, X-Ray Emission , Spectrophotometry, Atomic , Trace Elements/analysis
3.
Epidemiol Prev ; 33(6 Suppl 2): 1-72, 2009.
Article in Italian | MEDLINE | ID: mdl-20839608
4.
Epidemiol Prev ; 33(6 Suppl 1): 13-26, 2009.
Article in Italian | MEDLINE | ID: mdl-20418582

ABSTRACT

OBJECTIVE: to produce environmental indicators suitable for an epidemiological surveillance in 10 Italian cities part of the EpiAir Project (2001-2005). METHODS: the environmental parameters that correlate to relevant health effects are the particles with diameters less than or equal to 10 micrometers (PM10), the nitrogen dioxide (NO2) and the ozone (O3). The necessary meteorological data are: temperature, relative humidity, barometric pressure and apparent temperature.We have identified some criteria to select monitoring stations and have taken standard methods of calculation to produce environmental indicators starting from the daily data available after closely evaluating the completeness of the existing data. Furthermore, we have checked the homogeneity of the selected data to ensure that it represents the population's exposure. RESULTS: close examination of descriptive statistics shows a critical situation of the considered pollutants. The analysis of the yearly state underlines for PM10 values higher than 40 microg/m3 in the area of Mestre-Venice and in Milan, Turin, Bologna e Taranto. For NO2, values are consistently above 40 microg/m3 in Milan, Turin, Bologna, Florence, Rome and Palermo. For ozone, the concentrations were stable, with the exception of Summer 2003 when we recorded, on average, an increase of 13% compared to the mean value estimated for the ten cities during the study period, especially in Mestre-Venice, Turin and Palermo. CONCLUSIONS: it is important to ensure the consistency of the methods and instruments in environmental monitoring. To evaluate health effects and perform interventions over the longterm, it is therefore fundamental that the data be homogenous, especially during the periodic reorganizations and rationalizations of air quality management. It is also necessary to include daily meteorological data that influence pollutant dispersion and population health status.


Subject(s)
Air Pollution/analysis , Urban Health , Epidemiology , Italy , Population Surveillance
SELECTION OF CITATIONS
SEARCH DETAIL
...