Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(1): 17-24, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36548788

ABSTRACT

Selective functional group interconversions in complex molecular settings underpin many of the challenges facing modern organic synthesis. Currently, a privileged subset of functional groups dominates this landscape, while others, despite their abundance, are sorely underdeveloped. Amines epitomize this dichotomy; they are abundant but otherwise intransigent toward direct interconversion. Here, we report an approach that enables the direct conversion of amines to bromides, chlorides, iodides, phosphates, thioethers, and alcohols, the heart of which is a deaminative carbon-centered radical formation process using an anomeric amide reagent. Experimental and computational mechanistic studies demonstrate that successful deaminative functionalization relies not only on outcompeting the H-atom transfer to the incipient radical but also on the generation of polarity-matched, productive chain-carrying radicals that continue to react efficiently. The overall implications of this technology for interconverting amine libraries were evaluated via high-throughput parallel synthesis and applied in the development of one-pot diversification protocols.


Subject(s)
Amides , Amines , Catalysis , Bromides , Chlorides
2.
Bioorg Med Chem ; 19(1): 650-62, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21093272

ABSTRACT

As part of our efforts to develop agents for cognitive enhancement, we have been focused on the 5-HT(6) receptor in order to identify potent and selective ligands for this purpose. Herein we report the identification of a novel series of 3-sulfonylindazole derivatives with acyclic amino side chains as potent and selective 5-HT(6) antagonists. The synthesis and detailed SAR of this class of compounds are reported.


Subject(s)
Indazoles/pharmacology , Receptors, Serotonin/drug effects , Serotonin Antagonists/pharmacology , HeLa Cells , Humans , Indazoles/chemistry , Magnetic Resonance Spectroscopy , Nootropic Agents/chemistry , Nootropic Agents/pharmacology , Serotonin Antagonists/chemistry , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 19(19): 5552-5, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19720528

ABSTRACT

A 5-fluoro-tetrahydrocarbazole serotonin reuptake inhibitor (SRI) building block was combined with a variety of linkers and dopamine D2 receptor ligands in an attempt to identify potent D2 partial agonist/SRI molecules for treatment of schizophrenia. This approach has the potential to treat a broader range of symptoms compared to existing therapies. Selected compounds in this series demonstrate high affinity for both targets and D2 partial agonism in cell-based and in vivo assays.


Subject(s)
Carbazoles/chemistry , Dopamine Agonists/chemistry , Receptors, Dopamine D2/agonists , Schizophrenia/drug therapy , Selective Serotonin Reuptake Inhibitors/chemistry , Serotonin 5-HT1 Receptor Antagonists , Animals , Carbazoles/chemical synthesis , Carbazoles/pharmacology , Disease Models, Animal , Dopamine Agonists/chemical synthesis , Dopamine Agonists/pharmacology , Rats , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Dopamine D2/metabolism , Selective Serotonin Reuptake Inhibitors/chemical synthesis , Selective Serotonin Reuptake Inhibitors/pharmacology
4.
Bioorg Med Chem Lett ; 15(22): 4985-8, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-16165356

ABSTRACT

Excitatory amino acid transporters (EAATs) play a pivotal role in maintaining glutamate homeostasis in the mammalian central nervous system, with the EAAT-2 subtype thought to be responsible for the bulk of the glutamate uptake in forebrain regions. A complete elucidation of the functional role of EAAT-2 has been hampered by the lack of potent and selective pharmacological tools. In this study, we describe the synthesis and biological activities of novel aryl-ether, biaryl-, and fluorene-aspartic acid and diaminopropionic acid analogs as potent inhibitors of EAAT-2. Compound (16) represents one of the most potent (IC50=85+/-5 nM) and selective inhibitors of EAAT-2 identified to date.


Subject(s)
Aspartic Acid/chemistry , Ether/chemistry , Excitatory Amino Acid Transporter 2/antagonists & inhibitors , Fluorenes/chemistry , Propionates/chemistry , beta-Alanine/analogs & derivatives , beta-Alanine/chemistry , Biological Transport/drug effects , Excitatory Amino Acid Transporter 2/metabolism , Inhibitory Concentration 50 , Molecular Structure , Propionates/chemical synthesis , Structure-Activity Relationship , beta-Alanine/chemical synthesis
5.
Mol Pharmacol ; 68(4): 974-82, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16014807

ABSTRACT

In this study, we describe the pharmacological characterization of novel aryl-ether, biaryl, and fluorene aspartic acid and diaminopropionic acid analogs as potent inhibitors of EAAT2, the predominant glutamate transporter in forebrain regions. The rank order of potency determined for the inhibition of human EAAT2 was N(4)-[4-(2-bromo-4,5-difluorophenoxy)phenyl]-L-asparagine (WAY-213613) (IC(50) = 85 +/- 5 nM) > N(4)-(2'-methyl-1,1'-biphenyl-4-yl)-L-asparagine (WAY-213394) (IC(50) = 145 +/- 22 nM) = N(4)-[7-(trifluoromethyl)-9H-fluoren-2-yl]-L-asparagine (WAY-212922) (IC(50) = 157 +/- 11 nM) = 3-{[(4'-chloro-2-methyl-1,1'-biphenyl-4-yl)carbonyl]amino}-L-alanine (WAY-211686) (IC(50) = 190 +/- 10 nM). WAY-213613 was the most selective of the compounds examined, with IC(50) values for inhibition of EAAT1 and EAAT3 of 5 and 3.8 microM, respectively, corresponding to a 59- and 45-fold selectivity toward EAAT2. An identical rank order of potency [WAY-213613 (35 +/- 7 nM) > WAY-213394 (92 +/- 13 nM) = WAY-212922 (95 +/- 8 nM) = WAY-211686 (101 +/- 20 nM)] was observed for the inhibition of glutamate uptake in rat cortical synaptosomes, consistent with the predominant contribution of EAAT2 to this activity. Kinetic studies with each of the compounds in synaptosomes revealed a competitive mechanism of inhibition. All compounds were determined to be nonsubstrates by evaluating both the stimulation of currents in EAAT2-injected oocytes and the heteroexchange of d-[(3)H]aspartate from cortical synaptosomes. WAY-213613 represents the most potent and selective inhibitor of EAAT2 identified to date. Taken in combination with its selectivity over ionotropic and metabotropic glutamate receptors, this compound represents a potential tool for the further elucidation of EAAT2 function.


Subject(s)
Aspartic Acid/analogs & derivatives , Excitatory Amino Acid Transporter 2/antagonists & inhibitors , Propionates/pharmacology , Animals , Aspartic Acid/pharmacology , CHO Cells , Cell Line , Cricetinae , Humans , Models, Molecular , Propionates/chemistry , Rats , Synaptosomes/drug effects , Synaptosomes/physiology , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...