Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 6(4): 559-69, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25611616

ABSTRACT

The amyloid precursor protein (APP) plays a central role in Alzheimer's disease (AD). Preventing deregulated APP processing by inhibiting amyloidogenic processing of carboxy-terminal fragments (APP-CTFs), and reducing the toxic effect of amyloid beta (Aß) peptides remain an effective therapeutic strategy. We report the design of piperazine-containing compounds derived from chloroquine structure and evaluation of their effects on APP metabolism and ability to modulate the processing of APP-CTF and the production of Aß peptide. Compounds which retained alkaline properties and high affinity for acidic cell compartments were the most effective. The present study demonstrates that (1) the amino side chain of chloroquine can be efficiently substituted by a bis(alkylamino)piperazine chain, (2) the quinoline nucleus can be replaced by a benzyl or a benzimidazole moiety, and (3) pharmacomodulation of the chemical structure allows the redirection of APP metabolism toward a decrease of Aß peptide release, and increased stability of APP-CTFs and amyloid intracellular fragment. Moreover, the benzimidazole compound 29 increases APP-CTFs in vivo and shows promising activity by the oral route. Together, this family of compounds retains a lysosomotropic activity which inhibits lysosome-related Aß production, and is likely to be beneficial for therapeutic applications in AD.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Chloroquine/analogs & derivatives , Neuroprotective Agents/chemistry , Quinolines/chemistry , Amyloid beta-Peptides/metabolism , Animals , Blotting, Western , Cell Death/drug effects , Cell Line, Tumor , Chloroquine/chemistry , Chloroquine/pharmacology , Drug Design , Female , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Mice, Inbred C57BL , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Neuroprotective Agents/pharmacology , Peptide Fragments/metabolism , Protein Stability/drug effects , Quinolines/pharmacology , Water/chemistry
2.
Aging Cell ; 12(1): 11-23, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23082852

ABSTRACT

While the spatiotemporal development of Tau pathology has been correlated with occurrence of cognitive deficits in Alzheimer's patients, mechanisms underlying these deficits remain unclear. Both brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor TrkB play a critical role in hippocampus-dependent synaptic plasticity and memory. When applied on hippocampal slices, BDNF is able to enhance AMPA receptor-dependent hippocampal basal synaptic transmission through a mechanism involving TrkB and N-methyl-d-Aspartate receptors (NMDAR). Using THY-Tau22 transgenic mice, we demonstrated that hippocampal Tau pathology is associated with loss of synaptic enhancement normally induced by exogenous BDNF. This defective response was concomitant to significant memory impairments. We show here that loss of BDNF response was due to impaired NMDAR function. Indeed, we observed a significant reduction of NMDA-induced field excitatory postsynaptic potential depression in the hippocampus of Tau mice together with a reduced phosphorylation of NR2B at the Y1472, known to be critical for NMDAR function. Interestingly, we found that both NR2B and Src, one of the NR2B main kinases, interact with Tau and are mislocalized to the insoluble protein fraction rich in pathological Tau species. Defective response to BDNF was thus likely related to abnormal interaction of Src and NR2B with Tau in THY-Tau22 animals. These are the first data demonstrating a relationship between Tau pathology and synaptic effects of BDNF and supporting a contribution of defective BDNF response and impaired NMDAR function to the cognitive deficits associated with Tauopathies.


Subject(s)
Alzheimer Disease/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission/physiology , tau Proteins/genetics , Alzheimer Disease/genetics , Animals , Brain-Derived Neurotrophic Factor/pharmacology , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Synaptic Transmission/drug effects , Transgenes , tau Proteins/biosynthesis
3.
Curr Alzheimer Res ; 9(4): 397-405, 2012 May.
Article in English | MEDLINE | ID: mdl-22272619

ABSTRACT

Recent data indicate that Tau immunotherapy may be relevant for interfering with neurofibrillary degeneration in Alzheimer disease and related disorders referred to as Tauopathies. The key question for immunotherapy is the choice of the epitope to target. Abnormal phosphorylation is a well-described post-translational modification of Tau proteins and may be a good target. In the present study, we investigated the effects of active immunization against the pathological epitope phospho-Ser422 in the THY-Tau22 transgenic mouse model. Starting from 3-6 months of age, THY-Tau22 mice develop hippocampal neurofibrillary tangle-like inclusions and exhibit phosphorylation of Tau on several AD-relevant Tau epitopes. Three month-old THY-Tau22 mice were immunized with a peptide including the phosphoserine 422 residue while control mice received the adjuvant alone. A specific antibody response against the phospho-Ser422 epitope was observed. We noticed a decrease in insoluble Tau species (AT100- and pS422 immunoreactive) by both biochemical and immunohistochemical means correlated with a significant cognitive improvement using the Y-maze. This Tau immunotherapy may facilitate Tau clearance from the brain toward the periphery since, following immunization, an increase in Tau concentrations was observed in blood. Overall, the present work is, to our knowledge, the first one to demonstrate that active immunotherapy targeting a real pathological epitope such as phospho-Ser422 epitope is efficient. This immunotherapy allows for Tau clearance and improves cognitive deficits promoted by Tau pathology in a well-defined Tau transgenic model.


Subject(s)
Alzheimer Disease/immunology , Alzheimer Disease/therapy , Immunotherapy, Active/methods , Mutation/genetics , Serine/metabolism , tau Proteins/metabolism , Age Factors , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Antibodies/blood , Cognition Disorders/etiology , Cognition Disorders/therapy , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Peptides/administration & dosage , Peptides/immunology , Phosphorylation/immunology , Serine/genetics , tau Proteins/genetics
4.
Neurobiol Dis ; 43(2): 486-94, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21569847

ABSTRACT

Tau pathology is encountered in many neurodegenerative disorders known as tauopathies, including Alzheimer's disease. Physical activity is a lifestyle factor affecting processes crucial for memory and synaptic plasticity. Whether long-term voluntary exercise has an impact on Tau pathology and its pathophysiological consequences is currently unknown. To address this question, we investigated the effects of long-term voluntary exercise in the THY-Tau22 transgenic model of Alzheimer's disease-like Tau pathology, characterized by the progressive development of Tau pathology, cholinergic alterations and subsequent memory impairments. Three-month-old THY-Tau22 mice and wild-type littermates were assigned to standard housing or housing supplemented with a running wheel. After 9 months of exercise, mice were evaluated for memory performance and examined for hippocampal Tau pathology, cholinergic defects, inflammation and genes related to cholesterol metabolism. Exercise prevented memory alterations in THY-Tau22 mice. This was accompanied by a decrease in hippocampal Tau pathology and a prevention of the loss of expression of choline acetyltransferase within the medial septum. Whereas the expression of most cholesterol-related genes remained unchanged in the hippocampus of running THY-Tau22 mice, we observed a significant upregulation in mRNA levels of NPC1 and NPC2, genes involved in cholesterol trafficking from the lysosomes. Our data support the view that long-term voluntary physical exercise is an effective strategy capable of mitigating Tau pathology and its pathophysiological consequences.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/therapy , Exercise Therapy/methods , Physical Conditioning, Animal/physiology , tau Proteins/genetics , Alzheimer Disease/physiopathology , Animals , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , tau Proteins/adverse effects , tau Proteins/antagonists & inhibitors
5.
Neurobiol Learn Mem ; 95(3): 296-304, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21167950

ABSTRACT

We evaluated various forms of hippocampus-dependent learning and memory, and hippocampal synaptic plasticity in THY-Tau22 transgenic mice, a murine tauopathy model that expresses double-mutated 4-repeat human tau, and shows neuropathological tau hyperphosphorylation and aggregation throughout the brain. Focussing on hippocampus, immunohistochemical studies in aged THY-Tau22 mice revealed prominent hyper- and abnormal phosphorylation of tau in CA1 region, and an increase in glial fibrillary acidic protein (GFAP) in hippocampus, but without signs of neuronal loss. These mice displayed spatial, social, and contextual learning and memory defects that could not be reduced to subtle neuromotor disability. The behavioral defects coincided with changes in hippocampal synaptic functioning and plasticity as measured in paired-pulse and novel long-term depression protocols. These results indicate that hippocampal tauopathy without neuronal cell loss can impair neural and behavioral plasticity, and further show that transgenic mice, such as the THY-Tau22 strain, might be useful for preclinical research on tauopathy pathogenesis and possible treatment.


Subject(s)
Association Learning/physiology , Hippocampus/physiopathology , Long-Term Synaptic Depression/physiology , Maze Learning/physiology , Tauopathies/physiopathology , Analysis of Variance , Animals , Conditioning, Classical/physiology , Disease Models, Animal , Fear , Food Preferences , Hippocampus/metabolism , Hippocampus/pathology , Humans , Immunohistochemistry , Male , Memory, Short-Term/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphorylation , Social Behavior , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/genetics , tau Proteins/metabolism
6.
Biochem Soc Trans ; 38(4): 967-72, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20658986

ABSTRACT

Tau pathology is characterized by intracellular aggregates of abnormally and hyperphosphorylated tau proteins. It is encountered in many neurodegenerative disorders, but also in aging. These neurodegenerative disorders are referred to as tauopathies. Comparative biochemistry of the tau aggregates shows that they differ in both tau isoform phosphorylation and content, which enables a molecular classification of tauopathies. In conditions of dementia, NFD (neurofibrillary degeneration) severity is correlated to cognitive impairment and is often considered as neuronal death. Using tau animal models, analysis of the kinetics of tau phosphorylation, aggregation and neuronal death in parallel to electrophysiological and behavioural parameters indicates a disconnection between cognition deficits and neuronal cell death. Tau phosphorylation and aggregation are early events followed by cognitive impairment. Neuronal death is not observed before the oldest ages. A sequence of events may be the formation of toxic phosphorylated tau species, their aggregation, the formation of neurofibrillary tangles (from pre-tangles to ghost tangles) and finally neuronal cell death. This sequence will last from 15 to 25 years and one can ask whether the aggregation of toxic phosphorylated tau species is a protection against cell death. Apoptosis takes 24 h, but NFD lasts for 24 years to finally kill the neuron or rather to protect it for more than 20 years. Altogether, these data suggest that NFD is a transient state before neuronal death and that therapeutic interventions are possible at that stage.


Subject(s)
Neurons/physiology , Protein Kinases/metabolism , Protein Multimerization/physiology , tau Proteins/metabolism , Animals , Cell Death/physiology , Chemical Precipitation , Disease Models, Animal , Humans , Models, Biological , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Neurons/metabolism , Neurons/pathology , Phosphorylation , Tauopathies/etiology , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/chemistry , tau Proteins/physiology
7.
Curr Alzheimer Res ; 6(2): 152-7, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19355850

ABSTRACT

Alzheimer's disease is a neurodegenerative disorder characterized by amyloid deposits and neurofibrillary tangles. Cholinergic dysfunction is also a main pathological feature of the disease. Nevertheless, the links between cholinergic dysfunction and neuropathological hallmarks of Alzheimer's are still unknown. In the present study, we aimed to further investigate Tau aggregation in cholinergic systems, in a Tau transgenic mouse model. THY-Tau22 mice have recently been described as a novel model of Alzheimer-like Tau pathology without motor deficits. This strain presents an age-dependent development of Tau pathology leading to synaptic dysfunctions as well as learning and memory impairments. In the present work, we observed that Tau pathology differentially affects cerebral structures. Interestingly, early Tau pathology was observed in both hippocampus and basal forebrain. Moreover, some morphological as well as functional alterations of the septohippocampal pathway suggest a disconnection between these two key brain regions in Alzheimer's disease. Finally, these data suggest that Tau pathology may participate in cholinergic degeneration.


Subject(s)
Alzheimer Disease/pathology , Hippocampus/pathology , Septum of Brain/pathology , tau Proteins/genetics , tau Proteins/metabolism , Age Factors , Animals , Brain Mapping , Disease Models, Animal , Glycine/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Neural Pathways/pathology , Proline/genetics , Serine/genetics , Stilbamidines/metabolism , Valine/genetics
8.
Neurobiol Dis ; 20(2): 625-37, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15936948

ABSTRACT

In Alzheimer's disease, the complex catabolism of amyloid precursor protein (APP) leads to the production of amyloid-beta (Abeta) peptide, the major component of amyloid deposits. APP is cleaved by beta- and alpha-secretases to generate APP carboxy-terminal fragments (CTFs). Abeta peptide and amyloid intracellular domain are resulting from the cleavage of APP-CTFs by the gamma-secretase. In the present study, we hypothesize that post-translational modification of APP-CTFs could modulate their processing by the gamma-secretase. Inhibition of the gamma-secretase was shown to increase the total amount of APP-CTFs. Moreover, we showed that this increase was more marked among the phosphorylated variants and directly related to the activity of the gamma-secretase, as shown by kinetics analyses. Phosphorylated CTFs were shown to associate to presenilin 1, a major protein of the gamma-secretase complex. The phosphorylation of CTFs at the threonine 668 resulting of the c-Jun N-terminal kinase activation was shown to enhance their degradation by the gamma-secretase. Altogether, our results demonstrated that phosphorylated CTFs can be the substrates of the gamma-secretase and that an increase in the phosphorylation of APP-CTFs facilitates their processing by gamma-secretase.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Endopeptidases/metabolism , Peptide Fragments/metabolism , Alzheimer Disease/physiopathology , Amino Acid Sequence/physiology , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides/biosynthesis , Amyloid beta-Protein Precursor/chemistry , Animals , Aspartic Acid Endopeptidases , Brain/physiopathology , Enzyme Inhibitors/pharmacology , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Membrane Proteins/metabolism , Peptide Fragments/chemistry , Phosphorylation , Presenilin-1 , Protein Processing, Post-Translational/physiology , Protein Structure, Tertiary/physiology , Rabbits , Threonine/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...