Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 116(3): 848-854, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37084325

ABSTRACT

The emerald ash borer (EAB), Agrilus planipennis Fairmaire, is the most destructive invasive pest on ash (Fraxinus spp.) in the United States. We determined whether ash trees injected with emamectin benzoate (EB) could protect untreated neighboring ash trees. We also determined whether the selective treatment of ash trees with EB injections had adverse effects on the establishment of introduced larval parasitoids Tetrastichus planipennis Yang and Spathius galinae Belokobylskij & Strazenac. In experiment one, trees were treated with EB and then retreated 3 years later. Five years post initial treatment, we found that 90% of treated ash trees retained healthy crowns, significantly higher than those of untreated control ash trees (16%). For experiment two, trees only received one treatment of EB and after 2 years 100% of treated ash trees retained healthy crowns, significantly higher than those of untreated ash trees (50%). In both experiments, we found that distance from the central EB-treated tree was not a significant predictor for tree health or presence of EAB exit holes. Although distance from the EB-treated trees appeared to have a significant positive relationship with woodpecker feeding signs on neighboring trees, such relationships did not result in significant differences in the proportion of neighboring ash trees retaining healthy crowns between EB treatment and control plots. The introduced EAB parasitoids appeared to have established equally well between treatment and control plots. Findings are discussed in the context of integration of EB trunk injection with biological control for protection of North American ash against EAB.


Subject(s)
Coleoptera , Fraxinus , Animals , Biological Control Agents , Larva , Trees
2.
J Econ Entomol ; 116(2): 478-485, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36734017

ABSTRACT

The continued threat of emerald ash borer (Agrilus planipennis; EAB) to North American ash trees (Fraxinus spp.) has necessitated the use of systemic insecticide treatments as a primary control strategy against EAB in urban centers. Altered tree phenology due to systemic insecticides could mediate nontarget effects on other insect species, such as seed weevils or leaf-feeders, but whether such injections alter phenological events has not been studied. This study assessed the effects of systemic injections of emamectin benzoate or azadirachtin relative to untreated controls on the spring and fall phenology of mature green ash trees in Saint Paul, MN, USA from fall 2017 to spring 2019. EAB was first detected in this area in 2009. Trees showed minor, visible signs of EAB infestation at study initiation, but not mortality. We examined six phenological events: bud swelling, budburst, flowering, leaf out, leaf color change, and leaf abscission using a visual survey protocol. The timing of phenological events was similar across the different treatments for all but two of events; budburst and flowering. Budburst and flowering occurred 7 d and 5 d earlier, respectively, in treated trees than untreated trees. Given symptoms observed, we posit that delays in these events in untreated trees were due to infestations of EAB and the treatments of emamectin benzoate or azadiractin simply preserved the original phenology. The results from this study suggest that systemic insecticides may mitigate changes in ash tree phenology such as delayed leaf out that may be early symptoms of emerald ash borer.


Subject(s)
Coleoptera , Fraxinus , Insecticides , Animals , Larva , Trees
3.
Front Insect Sci ; 3: 990909, 2023.
Article in English | MEDLINE | ID: mdl-38469523

ABSTRACT

Emerald ash borer (EAB), Agrilus plannipenis Fairmaire, is an invasive insect accidentally introduced to North America from Asia that attacks and kills ash trees (Fraxinus spp.). A common control strategy in urban centers has been the injection of systemic insecticides into mature trees, which can be costly at large scales. This study investigated whether treating a subset of a susceptible urban ash population could confer associational protection to untreated trees; i.e. improving or maintaining crown health of the latter. We selected approximately 100 mature ash trees along city streets in each of 12 sites in central and southeastern Minnesota in 2017. Each site had low but growing infestations of EAB such that canopy decline was not yet widespread. We treated 50% of trees with emamectin benzoate in eight sites and 50% of trees in four sites with azadirachtin in site-wide spatial gradients, such that the remaining 50% of trees at all sites were left untreated. Crown health of all trees was monitored for five years (2017 to 2021). Across all sites, we noted an overall maintenance or increase in crown health of both treated and untreated trees, while groups of untreated reference trees approximately three km distant from each site to monitor general tree health and EAB pressure declined quickly. These results suggested that protective benefits were conferred by treated trees to untreated trees within sites. Quantifying the spatial scale of canopy preservation of untreated trees within sites proved challenging due to the lack of variation in crown condition between treated and untreated trees. In two of the twelve sites treated with emamectin benzoate, we noted statistical evidence of improvements in crown condition of untreated trees when located within 100m of treated trees. Treating a subset of a susceptible ash population may aid in preserving untreated trees and provides a basis for developing a more cost-effective and environmentally favorable treatment regimen against EAB.

4.
J Econ Entomol ; 112(3): 1267-1273, 2019 05 22.
Article in English | MEDLINE | ID: mdl-30649416

ABSTRACT

The polyphagous shot hole borer (Euwallacea nr. fornicatus, Coleoptera: Curculionidae: Scolytinae), an exotic and invasive ambrosia beetle, was recently found attacking a number of tree species in Los Angeles, Orange, Riverside, and San Diego Counties in southern California. Their colonization and subsequent inoculation of a suite of symbiotic fungi that cause Fusarium Dieback, has resulted in extensive mortality of some tree species, including, California sycamore (Platanus racemose Nutt.). There are no sustainable control options for polyphagous shot hole borer other than maintaining tree vigor and removal of severely infested host material. The effectiveness of therapeutic treatments of an injected systemic insecticide containing emamectin benzoate (EB) alone and in combination with a systemic fungicide, propiconazole (P), was evaluated over a 4-yr period for maintaining the health of individual sycamore trees infested by polyphagous shot hole borer. All treatments containing EB reduced levels of polyphagous shot hole borer colonization and associated sap flow at attack sites compared to untreated controls. A second trial evaluated preventative treatments of EB and P alone or combined to protect individual sycamore from colonization by polyphagous shot hole borer. After 45 mo posttreatment, all treatments significantly reduced polyphagous shot hole borer attack levels and successful attacks compared to untreated controls (EB + P > EB alone > P alone). We concluded that EB alone or combined with P are acceptable therapeutic and preventative treatments for management of polyphagous shot hole borer in California sycamore in southern California.


Subject(s)
Coleoptera , Weevils , Animals , California , Ivermectin/analogs & derivatives , Triazoles
5.
Plant Dis ; 102(10): 1950-1957, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30110246

ABSTRACT

Coast redwood (Sequoia sempervirens) is among the most widely planted landscape trees in California (CA) but is in decline outside its natural range due to factors including prolonged drought and plant pathogens. We investigated associations of Botryosphaeriaceae fungi with declining coast redwood trees throughout CA. More than 100 samples were collected from 11 coastal and inland locations in CA. Fifty-nine Botryosphaeria-like fungal strains were isolated and 18 were selected for further study. Phylogenetic analysis of ITS and EF-1α sequence data confirmed the presence of Botryosphaeria dothidea, Neofusicoccum australe, N. luteum, N. mediterraneum, and N. parvum. Pathogenicity testing showed that although the Neofusicoccum species vary in virulence, all are more virulent that B. dothidea. N. australe caused the largest lesions, followed by N. luteum, N. parvum, and N. mediterraneum. Of the species recovered, only B. dothidea has been previously confirmed as a pathogen of coast redwood in CA. These results confirm that multiple Botryosphaeriaceae species are associated with branch decline and dieback on coast redwood in CA, which agrees with similar studies on woody agricultural crops. Accurate diagnosis of fungal pathogens of coast redwood is important for the development of disease management strategies and may help improve horticultural practices in maintenance of urban stands.


Subject(s)
Ascomycota/physiology , Plant Diseases/microbiology , Sequoia/microbiology , Ascomycota/genetics , California , Cities , DNA, Fungal/genetics , Phylogeny , Polymerase Chain Reaction , Population Dynamics
6.
Pest Manag Sci ; 71(11): 1540-52, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25491729

ABSTRACT

BACKGROUND: The invasive goldspotted oak borer, Agrilus auroguttatus, is threatening the health and survival of oak trees in San Diego County, California. From two sites in the core area of the infestation, we report a 2.5 year investigation of the impact of A. auroguttatus on coast live oak, Quercus agrifolia, before and after treatment with two systemic insecticides, emamectin benzoate (EB) and imidacloprid (IC). RESULTS: None of the 446 survey trees died during the study. The crown dieback rating of most trees at both study sites remained unchanged, regardless of insecticide treatment. A higher cumulative increase in the number of A. auroguttatus emergence holes was observed on trees that were previously infested and on trees with larger diameters. Over the 2.5 year period, the new infestation rates of initially uninfested trees across the untreated and treated groups were 50% (EB) and 32% (IC), and neither EB nor IC treatment affected cumulative increases in the number of emergence holes. EB-injected trees did not have significant annual increases in the number of A. auroguttatus emergence holes at either 1.5 or 2.5 years compared with that at 0.5 years, whereas untreated trees had significant annual increases. Although IC-injected trees had a significantly greater annual increment in the number of emergence holes than untreated trees during the last year of the study, treated trees had significant reductions in annual increases in emergence holes at both 1.5 and 2.5 years compared with that at 0.5 years. Untreated trees had no significant reduction in the annual increase in emergence holes at 1.5 and 2.5 years. CONCLUSIONS: A. auroguttatus preferentially attacked previously infested and larger (diameter at breast height > 15-30 cm) oak trees, but the attacks led to very gradual changes in the health of the trees. Both EB and IC provided minor suppressive effects on A. auroguttatus emergence. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Coleoptera , Imidazoles , Ivermectin/analogs & derivatives , Nitro Compounds , Quercus/parasitology , Animals , California , Insect Control/methods , Insecticides , Introduced Species , Neonicotinoids
7.
Pest Manag Sci ; 70(5): 771-8, 2014 May.
Article in English | MEDLINE | ID: mdl-23868360

ABSTRACT

BACKGROUND: Protection of conifers from bark beetle colonization typically involves applications of liquid formulations of contact insecticides to the tree bole. An evaluation was made of the efficacy of bole injections of emamectin benzoate alone and combined with the fungicide propiconazole for protecting individual lodgepole pine, Pinus contorta Dougl. ex Loud., from mortality attributed to colonization by mountain pine beetle, Dendroctonus ponderosae Hopkins, and progression of associated blue stain fungi. RESULTS: Injections of emamectin benzoate applied in mid-June did not provide adequate levels of tree protection; however, injections of emamectin benzoate + propiconazole applied at the same time were effective for two field seasons. Injections of emamectin benzoate and emamectin benzoate + propiconazole in mid-September provided tree protection the following field season, but unfortunately efficacy could not be determined during a second field season owing to insufficient levels of tree mortality observed in the untreated control, indicative of low D. ponderosae populations. CONCLUSION: Previous evaluations of emamectin benzoate for protecting P. contorta from mortality attributed to D. ponderosae have failed to demonstrate efficacy, which was later attributed to inadequate distribution of emamectin benzoate following injections applied several weeks before D. ponderosae colonization. The present data indicate that injections of emamectin benzoate applied in late summer or early fall will provide adequate levels of tree protection the following summer, and that, when emamectin benzoate is combined with propiconazole, tree protection is afforded the year that injections are implemented.


Subject(s)
Insecticides , Ivermectin/analogs & derivatives , Ophiostomatales/drug effects , Pinus , Triazoles , Weevils , Animals , Fungicides, Industrial/pharmacology , Insect Control , Random Allocation , Weevils/microbiology
8.
J Econ Entomol ; 102(3): 1062-9, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19610420

ABSTRACT

We evaluated the efficacy of systemic insecticides emamectin benzoate and fipronil for preventing mortality of individual loblolly pines, Pinus taeda L., as a result of attacks by southern pine bark beetles (Coleoptera: Curculionidae, Scolytinae) for two consecutive years in Mississippi (2005-2006) and Alabama (2006-2007). Trees were injected once in the spring of 2005 (Mississippi) or 2006 (Alabama) and then were baited with species-specific bark beetle lures several weeks later. The southern pine beetle, Dendroctonus frontalis Zimmermann, was the target species but was changed to Ips spp. in Mississippi (but not Alabama) the second year because of few southern pine beetle attacks on baited trees. Single injections of emamectin benzoate were effective in reducing tree mortality caused by bark beetles compared with untreated checks. Although less effective overall, fipronil also significantly reduced tree mortality from southern pine beetle compared with the checks during the second year in Alabama. Tree mortality continued well after the lures had been removed. Evaluations of bolts taken from experimental trees killed in 2006 indicated that emamectin benzoate effectively prevented parent bark beetle gallery construction and that fipronil significantly reduced lengths of galleries constructed by adult beetles, brood development, and emergence, compared with checks. In contrast, neither insecticide treatment prevented the bark beetles from inoculating blue stain fungi, Ophiostoma spp., into treated trees.


Subject(s)
Coleoptera/drug effects , Insect Control/methods , Insecticides/toxicity , Pinus taeda/parasitology , Alabama , Animals , Coleoptera/physiology , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Mississippi , Pyrazoles/toxicity , Statistics, Nonparametric
9.
J Econ Entomol ; 99(1): 94-101, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16573328

ABSTRACT

We evaluated the efficacy of the systemic insecticides dinotefuran, emamectin benzoate, fipronil, and imidacloprid for preventing attacks and brood production of southern pine engraver beetles (Coleoptera: Curculionidae: Scolytinae) and wood borers (Coleoptera: Cerambycidae) on standing, stressed trees and bolt sections of loblolly pine, Pinus taeda L., in eastern Texas. Emamectin benzoate significantly reduced the colonization success of engraver beetles and associated wood borers in both stressed trees and pine bolt sections. Fipronil was nearly as effective as emamectin benzoate in reducing insect colonization of bolts 3 and 5 mo after injection but only moderately effective 1 mo after injection. Fipronil also significantly reduced bark beetle-caused mortality of stressed trees. Imidacloprid and dinotefuran were ineffective in preventing bark beetle and wood borer colonization of bolts or standing, stressed trees. The injected formulation of emamectin benzoate was found to cause long vertical lesions in the sapwood-phloem interface at each injection point.


Subject(s)
Coleoptera/drug effects , Insect Control/methods , Insecticides , Pinus taeda , Animals , Guanidines , Imidazoles , Injections/methods , Insect Control/standards , Ivermectin/analogs & derivatives , Neonicotinoids , Nitro Compounds , Plant Diseases , Pyrazoles , Reproduction/drug effects , Time Factors , Weevils/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...