Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 161(1)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38949590

ABSTRACT

Structures formed by dense CO adsorption layers can provide information about the balance between molecule-surface and molecule-molecule interactions. However, in many cases, the structure models are not clear. Using density functional theory (DFT) and scanning tunneling microscopy (STM), we have investigated the high-coverage CO layer on the Ru(0001) surface. Previous investigations by low-energy electron diffraction (LEED) and vibrational spectroscopy led to conflicting results about the structure. In the present study, 88 models with coverages between 0.58 and 0.77 monolayers have been analyzed by DFT. The most stable structures consist of small, compact CO clusters with an internal pseudo 1×1 structure. The CO molecules in the cluster centers occupy on-top sites in an upright position, whereas the molecules farther outside are slightly shifted from these sites and tilted outward. STM data of the CO-saturated surface at low temperatures, corresponding to a coverage of 0.66 monolayers, show a quasi-hexagonal pattern of features with an internal hexagonal fine structure. Simulated images based on the cluster model agree with the experimental data. It is concluded that the high-coverage CO layer consists of the close-packed clusters predicted by DFT as the most stable structure elements. In the experiment, the sizes and shapes of the clusters vary. However, the arrangement is not random but follows defined tiling rules. The structure remains ordered, almost up to room temperature. The LEED data are re-interpreted on the basis of the Fourier transforms of the STM data, solving the long-standing conflict about the structure.

2.
Nanoscale ; 16(28): 13597-13612, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38958552

ABSTRACT

The nanoscale form of the Chevrel phase, Mo6S8, is demonstrated to be a highly efficient zinc-free anode in aqueous zinc ion hybrid supercapacitors (ZIHSCs). The unique morphological characteristics of the material when its dimensions approach the nanoscale result in fast zinc intercalation kinetics that surpass the ion transport rate reported for some of the most promising materials, such as TiS2 and TiSe2. In situ Raman spectroscopy, post-mortem X-ray diffraction, Hard X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations were combined to understand the overall mechanism of the zinc ion (de)intercalation process. The previously unknown formation of the sulfur-deficient Zn2.9Mo15S19 (Zn1.6Mo6S7.6) phase is identified, leading to a re-evaluation of the mechanism of the (de)intercalation process. A full cell comprised of an activated carbon (YEC-8A) positive electrode delivers a cell capacity of 38 mA h g-1 and an energy density of 43.8 W h kg-1 at a specific current density of 0.2 A g-1. The excellent cycling stability of the device is demonstrated for up to 8000 cycles at 3 A g-1 with a coulombic efficiency close to 100%. Post-mortem microscopic studies reveal the absence of dendrite formation at the nanosized Mo6S8 anode, in stark contrast to the state-of-the-art zinc electrode.

3.
Phys Chem Chem Phys ; 26(26): 18435-18448, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38916054

ABSTRACT

Aiming at a better fundamental understanding of the chemistry of bimetallic PtAg/Pt(111) surfaces, we have investigated the stability, electronic properties and CO adsorption properties of bimetallic PtAg surfaces, including pseudomorphic Ag film covered Pt(111) surfaces and PtxAg1-x/Pt(111) monolayer surface alloys, using periodic density functional theory calculations. The data provide detailed insights into the relative stabilities of different surface configurations, as indicated by their formation enthalpies and surface energies, and changes in their electronic properties, i.e., in the projected local densities of states and shifts in the d-band center. The adsorption properties of different Ptn ensembles were systematically tested using CO as a probe molecule. In addition to electronic ligand and strain effects, we were particularly interested in the role of different adsorption sites and of the local COad coverage, given by the number of CO molecules per Pt surface atom in the Ptn ensemble. Different from PdAg surfaces, variations in the adsorption energy with adsorption sites and with increasing local coverage are small up to one COad per Pt surface atom. Finally, formation of multicarbonyl species with more than one COad per Pt surface atom was tested for separated Pt1 monomers and can be excluded at finite temperatures. General trends and aspects are derived by comparison with comparable data for PdAg bimetallic surfaces. Fundamental insights relevant for applications of bimetallic Pt catalysts, specifically PtAg catalysts, are briefly discussed.

4.
ACS Appl Mater Interfaces ; 16(25): 32169-32188, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38862108

ABSTRACT

Offering a compelling combination of safety and cost-effectiveness, water-in-salt (WiS) electrolytes have emerged as promising frontiers in energy storage technology. Still, there is a strong demand for research and development efforts to make these electrolytes ripe for commercialization. Here, we present a first-principles-based molecular dynamics (MD) study addressing in detail the properties of a sodium triflate WiS electrolyte for Na-ion batteries. We have developed a workflow based on a machine learning (ML) potential derived from ab initio MD simulations. As ML potentials are typically restricted to the interpolation of the data points of the training set and have hardly any predictive properties, we subsequently optimize a classical force field based on physics principles to ensure broad applicability and high performance. Performing and analyzing detailed MD simulations, we identify several very promising properties of the sodium triflate as a WiS electrolyte but also indicate some potential stability challenges associated with its use as a battery electrolyte.

5.
ChemSusChem ; : e202301493, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411370

ABSTRACT

Due to its negligible capacity with respect to sodium intercalation, graphite is not suited as anode material for sodium ion batteries. Hard carbon materials, on the other hand, provide reasonably high capacities at low insertion potential, making them a promising anode materials for sodium (and potassium) ion batteries. The particular nanostructure of these functionalized carbon-based materials has been found to be crucially linked to the material performance. However, there is still a lack of understanding with respect to the functional role of structural units, such as defects, for intercalation and storage. To overcome these problems, the intercalation of Li, Na, and K in graphitic model structures with distinct defect configurations has been investigated by density functional theory. The calculations confirm that defects are able to stabilize intercalation of larger alkali metal contents. At the same time, it is shown that a combination of phonon and band structure calculations are able to explain characteristic Raman features typically observed for alkali metal intercalation in hard carbon, furthermore allowing for the quantification of the alkali metal intercalation inbetween the layers of hard carbon anodes.

6.
Chem Asian J ; 19(8): e202400094, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38412058

ABSTRACT

We report the synergistic combination of Pd(OAc)2 and Ag2O for the oxidative C-H arylation of (poly)fluoroarenes with aryl pinacol boronates (Ar-Bpin) in DMF as the solvent. This procedure can be conducted easily in air, and without using additional ligands, to afford the fluorinated unsymmetrical biaryl products in up to 98 % yield. Experimental studies suggest that the formation of [PdL2(C6F5)2] in DMF as coordinating solvent does not take place under the reaction conditions as it is stable to reductive elimination and thus would deactivate the catalyst. Thus, the intermediate [Pd(DMF)2(ArF)(Ar)] must be formed selectively to give desired arylation products. DFT calculations predict a low barrier (5.87 kcal/mol) for the concerted metalation deprotonation (CMD) process between C6F5H and the Pd(II) species formed after transmetalation between the Pd(II)X2 complex and aryl-Bpin which forms a Pd-Arrich species. Thus a Pd(Arrich)(Arpoor) complex is generated selectively which undergoes reductive elimination to generate the unsymmetrical biaryl product.

7.
Nat Commun ; 15(1): 492, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216573

ABSTRACT

The development of competitive rechargeable Mg batteries is hindered by the poor mobility of divalent Mg ions in cathode host materials. In this work, we explore the dual cation co-intercalation strategy to mitigate the sluggishness of Mg2+ in model TiS2 material. The strategy involves pairing Mg2+ with Li+ or Na+ in dual-salt electrolytes in order to exploit the faster mobility of the latter with the aim to reach better electrochemical performance. A combination of experiments and theoretical calculations details the charge storage and redox mechanism of co-intercalating cationic charge carriers. Comparative evaluation reveals that the redox activity of Mg2+ can be improved significantly with the help of the dual cation co-intercalation strategy, although the ionic radius of the accompanying monovalent ion plays a critical role on the viability of the strategy. More specifically, a significantly higher Mg2+ quantity intercalates with Li+ than with Na+ in TiS2. The reason being the absence of phase transition in the former case, which enables improved Mg2+ storage. Our results highlight dual cation co-intercalation strategy as an alternative approach to improve the electrochemical performance of rechargeable Mg batteries by opening the pathway to a rich playground of advanced cathode materials for multivalent battery applications.

8.
ChemSusChem ; 17(3): e202300995, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37820026

ABSTRACT

The increasing need for electrochemical energy storage drives the development of post-lithium battery systems. Among the most promising new battery types are sodium-based battery systems. However, like its lithium predecessor, sodium batteries suffer from various issues like parasitic side reactions, which lead to a loss of active sodium inventory, thus reducing the capacity over time. Some problems in sodium batteries arise from an unstable solid electrolyte interphase (SEI) reducing its protective power e. g., due to increased solubility of SEI components in sodium battery systems. While it is known that the electrolyte affects the SEI structure, the exact formation mechanism of the SEI is not yet fully understood. In this study, we follow the initial SEI formation on a piece of sodium metal submerged in propylene carbonate with and without the electrolyte salt sodium perchlorate. We combine X-ray photoelectron spectroscopy, gas chromatography, and density functional theory to unravel the sudden emergence of propylene oxide after adding sodium perchlorate to the electrolyte solvent. We identify the formation of a sodium chloride layer as a crucial step in forming propylene oxide by enabling precursors formed from propylene carbonate on the sodium metal surface to undergo a ring-closing reaction. Based on our combined theoretical and experimental approach, we identify changes in the electrolyte decomposition process, propose a reaction mechanism to form propylene oxide and discuss alternatives based on known synthesis routes.

9.
Chemistry ; 30(1): e202302643, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37754665

ABSTRACT

Based on quantum chemical calculations, we predict strong solvatochromism in a light-driven molecular photocatalyst for hydrogen generation, that is we show that the electronic and optical properties of the photocatalyst strongly depend on the solvent it is dissolved in. Our calculations in particular indicate a solvent-dependent relocation of the highest occupied molecular orbital (HOMO). Ground-state density functional theory and linear response time-dependent density functional theory calculations were applied in order to investigate the influence of implicit solvents on the structural, electronic and optical properties of a molecular photocatalyst. Only at high dielectric constants of the solvent, is the HOMO located at the metal center of the photosensitizer, whereas at low dielectric constants the HOMO is centered at the metal atom of the catalytically active complex. We elucidate the electronic origins of this strong solvatochromic effect and sketch the consequences of these insights for the use of photocatalysts in different environments.

10.
ACS Appl Mater Interfaces ; 15(32): 38391-38402, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37527285

ABSTRACT

The high ionic conductivity and good oxidation stability of halide-based solid electrolytes evoke strong interest in this class of materials. Nonetheless, the superior oxidative stability compared to sulfides comes at the expense of limited stability toward reduction and instability against metallic lithium anodes, which hinders their practical use. In this context, the gradual fluorination of Li2ZrCl6-xFx (0 ≤ x ≤ 1.2) is proposed to enhance the stability toward lithium-metal anodes. The mechanochemically synthesized fluorine-substituted compounds show the expected distorted local structure (M2-M3 site disorder) and significant change in the overall Li-ion migration barrier. Theoretical calculations reveal an approximate minimum energy path for Li2ZrCl6-xFx (x = 0 and 0.5) with an increase in the Li+ migration energy barrier for Li2ZrCl5.5F0.5 in comparison to Li2ZrCl6. However, it is found that the fluorine-substituted compound exhibits substantially lower polarization after 800 h of lithium stripping and plating owing to enhanced interfacial stability against the lithium metal, as revealed by density functional theory and ex situ X-ray photoelectron spectroscopy, thanks to the formation of a fluorine-rich passivating interphase.

11.
J Chem Theory Comput ; 19(17): 5712-5730, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37528639

ABSTRACT

Accurate modeling of highly concentrated aqueous solutions, such as water-in-salt (WiS) electrolytes in battery applications, requires proper consideration of polarization contributions to atomic interactions. Within the force field molecular dynamics (MD) simulations, the atomic polarization can be accounted for at various levels. Nonpolarizable force fields implicitly account for polarization effects by incorporating them into their van der Waals interaction parameters. They can additionally mimic electron polarization within a mean-field approximation through ionic charge scaling. Alternatively, explicit polarization description methods, such as the Drude oscillator model, can be selectively applied to either a subset of polarizable atoms or all polarizable atoms to enhance simulation accuracy. The trade-off between simulation accuracy and computational efficiency highlights the importance of determining an optimal level of accounting for atomic polarization. In this study, we analyze different approaches to include polarization effects in MD simulations of WiS electrolytes, with an example of a Na-OTF solution. These approaches range from a nonpolarizable to a fully polarizable force field. After careful examination of computational costs, simulation stability, and feasibility of controlling the electrolyte properties, we identify an efficient combination of force fields: the Drude polarizable force field for salt ions and non-polarizable models for water. This cost-effective combination is sufficiently flexible to reproduce a broad range of electrolyte properties, while ensuring simulation stability over a relatively wide range of force field parameters. Furthermore, we conduct a thorough evaluation of the influence of various force field parameters on both the simulation results and technical requirements, with the aim of establishing a general framework for force field optimization and facilitating parametrization of similar systems.

12.
J Phys Chem Lett ; 14(9): 2354-2363, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36848227

ABSTRACT

The theoretical modeling of metal/water interfaces centers on an appropriate configuration of the electric double layer (EDL) under grand canonical conditions. In principle, ab initio molecular dynamics (AIMD) simulations would be the appropriate choice for treating the competing water-water and water-metal interactions and explicitly considering the atomic and electronic degrees of freedom. However, this approach only allows simulations of relatively small canonical ensembles over a limited period (shorter than 100 ps). On the other hand, computationally efficient semiclassical approaches can treat the EDL model based on a grand canonical scheme by averaging the microscopic details. Thus, an improved description of the EDL can be obtained by combining AIMD simulations and semiclassical methods based on a grand canonical scheme. By taking the Pt(111)/water interface as an example, we compare these approaches in terms of the electric field, water configuration, and double-layer capacitance. Furthermore, we discuss how the combined merits of the approaches can contribute to advances in EDL theory.

13.
J Phys Chem Lett ; 13(43): 10092-10100, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36269143

ABSTRACT

Electrochemical stability is a critical performance parameter for the materials used as electrolytes and electrodes in batteries. Using first-principles electronic structure calculations, we have determined the electrochemical stability windows of magnesium binary and ternary spinel compounds. These materials are candidates for protective coatings, solid electrolytes, and cathodes in Mg batteries, which represent a promising sustainable alternative to Li-ion batteries that still dominate the battery market. Furthermore, we have applied and assessed two different criteria for the chemical stability of the compounds. For the spinel materials, we identify the critical role of the ionic radii of the transition metal for the stability of the compounds. In addition, we determine the ion mobility in these materials using a recently developed descriptor. We thus provide guidelines for the choice of promising solid materials for Mg batteries with improved properties.

14.
Nature ; 604(7907): 635-642, 2022 04.
Article in English | MEDLINE | ID: mdl-35478233

ABSTRACT

The prosperity and lifestyle of our society are very much governed by achievements in condensed matter physics, chemistry and materials science, because new products for sectors such as energy, the environment, health, mobility and information technology (IT) rely largely on improved or even new materials. Examples include solid-state lighting, touchscreens, batteries, implants, drug delivery and many more. The enormous amount of research data produced every day in these fields represents a gold mine of the twenty-first century. This gold mine is, however, of little value if these data are not comprehensively characterized and made available. How can we refine this feedstock; that is, turn data into knowledge and value? For this, a FAIR (findable, accessible, interoperable and reusable) data infrastructure is a must. Only then can data be readily shared and explored using data analytics and artificial intelligence (AI) methods. Making data 'findable and AI ready' (a forward-looking interpretation of the acronym) will change the way in which science is carried out today. In this Perspective, we discuss how we can prepare to make this happen for the field of materials science.


Subject(s)
Artificial Intelligence , Data Science
15.
JACS Au ; 2(2): 463-471, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35252995

ABSTRACT

Ion mobility is a critical performance parameter not only in electrochemical energy storage and conversion but also in other electrochemical devices. On the basis of first-principles electronic structure calculations, we have derived a descriptor for the ion mobility in battery electrodes and solid electrolytes. This descriptor is entirely composed of observables that are easily accessible: ionic radii, oxidation states, and the Pauling electronegativities of the involved species. Within a particular class of materials, the migration barriers are connected to this descriptor through linear scaling relations upon the variation of either the cation chemistry of the charge carriers or the anion chemistry of the host lattice. The validity of these scaling relations indicates that a purely ionic view falls short of capturing all factors influencing ion mobility in solids. The identification of these scaling relations has the potential to significantly accelerate the discovery of materials with desired mobility properties.

16.
Chem Rev ; 122(12): 10746-10776, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35100505

ABSTRACT

Structures and processes at water/metal interfaces play an important technological role in electrochemical energy conversion and storage, photoconversion, sensors, and corrosion, just to name a few. However, they are also of fundamental significance as a model system for the study of solid-liquid interfaces, which requires combining concepts from the chemistry and physics of crystalline materials and liquids. Particularly interesting is the fact that the water-water and water-metal interactions are of similar strength so that the structures at water/metal interfaces result from a competition between these comparable interactions. Because water is a polar molecule and water and metal surfaces are both polarizable, explicit consideration of the electronic degrees of freedom at water/metal interfaces is mandatory. In principle, ab initio molecular dynamics simulations are thus the method of choice to model water/metal interfaces, but they are computationally still rather demanding. Here, ab initio simulations of water/metal interfaces will be reviewed, starting from static systems such as the adsorption of single water molecules, water clusters, and icelike layers, followed by the properties of liquid water layers at metal surfaces. Technical issues such as the appropriate first-principles description of the water-water and water-metal interactions will be discussed, and electrochemical aspects will be addressed. Finally, more approximate but numerically less demanding approaches to treat water at metal surfaces from first-principles will be briefly discussed.


Subject(s)
Molecular Dynamics Simulation , Water , Adsorption , Metals/chemistry , Water/chemistry
17.
Chemistry ; 27(68): 17104-17114, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34761834

ABSTRACT

Conductive polymers represent a promising alternative to semiconducting oxide electrodes typically used in dye-sensitized cathodes as they more easily allow a tuning of the physicochemical properties. This can then also be very beneficial for using them in light-driven catalysis. In this computational study, we address the coupling of Ru-based photosensitizers to a polymer matrix by combining two different first-principles electronic structure approaches. We use a periodic density functional theory code to properly account for the delocalized nature of the electronic states in the polymer. These ground state investigations are complemented by time-dependent density functional theory simulations to assess the Franck-Condon photophysics of the present photoactive hybrid material based on a molecular model system. Our results are consistent with recent experimental observations and allow to elucidate the light-driven redox chemical processes - eventually leading to charge separation - in the present functional hybrid systems with potential application as photocathode materials.

18.
JACS Au ; 1(10): 1752-1765, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34723278

ABSTRACT

The influence of electrolyte ions on the catalytic activity of electrode/electrolyte interfaces is a controversial topic for many electrocatalytic reactions. Herein, we focus on an effect that is usually neglected, namely, how the local reaction conditions are shaped by nonspecifically adsorbed cations. We scrutinize the oxygen evolution reaction (OER) at nickel (oxy)hydroxide catalysts, using a physicochemical model that integrates density functional theory calculations, a microkinetic submodel, and a mean-field submodel of the electric double layer. The aptness of the model is verified by comparison with experiments. The robustness of model-based insights against uncertainties and variations in model parameters is examined, with a sensitivity analysis using Monto Carlo simulations. We interpret the decrease in OER activity with the increasing effective size of electrolyte cations as a consequence of cation overcrowding near the negatively charged electrode surface. The same reasoning could explain why the OER activity increases with solution pH on the RHE scale and why the OER activity decreases in the presence of bivalent cations. Overall, this work stresses the importance of correctly accounting for local reaction conditions in electrocatalytic reactions to obtain an accurate picture of factors that determine the electrode activity.

19.
ACS Appl Mater Interfaces ; 13(21): 24984-24994, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34009936

ABSTRACT

Li-air batteries are a promising alternative to Li-ion batteries as they theoretically provide the highest possible specific energy density. Mainly, Li2O2 (lithium peroxide) and to a lesser extent, Li2O (lithium oxide) are assumed to be the discharge products of these batteries formed with the soluble LiO2 (lithium superoxide) considered to be an intermediate product. Bulk Li2O2 is an electronic insulator, and the precipitation of this compound on the cathode is thought to be the main limiting factor in achieving high capacities in lithium-oxygen cells. For the most promising electrolytes including solvents with high donor numbers, microscopy observations frequently reveal crystallite morphologies of Li2O2 compounds, rather than uniform layers covering the electrode surface. The precise morphologies of Li2O and Li2O2 particles, and their effect and their extent of contact with the electrode, which may all affect the capacity and rechargeability, however, remain largely undetermined. Here, we address the stability of various Li2O and Li2O2 surfaces and consequently, their crystallite morphologies using density functional theory calculations and ab initio thermodynamics. In contrast to previous studies, we also consider high-index surface terminations, which exhibit surprisingly low surface energies. We carefully analyze the reasons for the stability of these high-index surfaces, which also prominently influence the equilibrium shape of the particles, at least for Li2O2, and discuss the consequences for the observed morphology of the reaction products.

20.
Chemphyschem ; 22(5): 441-454, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33373085

ABSTRACT

In this work we aim towards the molecular understanding of the solid electrolyte interphase (SEI) formation at the electrode electrolyte interface (EEI). Herein, we investigated the interaction between the battery-relevant ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP-TFSI), Li and a Co3 O4 (111) thin film model anode grown on Ir(100) as a model study of the SEI formation in Li-ion batteries (LIBs). We employed mostly X-ray photoelectron spectroscopy (XPS) in combination with dispersion-corrected density functional theory calculations (DFT-D3). If the surface is pre-covered by BMP-TFSI species (model electrolyte), post-deposition of Li (Li+ ion shuttle) reveals thermodynamically favorable TFSI decomposition products such as LiCN, Li2 NSO2 CF3 , LiF, Li2 S, Li2 O2 , Li2 O, but also kinetic products like Li2 NCH3 C4 H9 or LiNCH3 C4 H9 of BMP. Simultaneously, Li adsorption and/or lithiation of Co3 O4 (111) to Lin Co3 O4 takes place due to insertion via step edges or defects; a partial transformation to CoO cannot be excluded. Formation of Co0 could not be observed in the experiment indicating that surface reaction products and inserted/adsorbed Li at the step edges may inhibit or slow down further Li diffusion into the bulk. This study provides detailed insights of the SEI formation at the EEI, which might be crucial for the improvement of future batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...