Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Genet Couns ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682751

ABSTRACT

The dystrophinopathies encompass the phenotypically variable forms of muscular dystrophy caused by pathogenic variants in the DMD gene. The dystrophinopathies include the most common inherited muscular dystrophy among 46,XY individuals, Duchenne muscular dystrophy, as well as Becker muscular dystrophy and other less common phenotypic variants. With increased access to and utilization of genetic testing in the diagnostic and carrier setting, genetic counselors and clinicians in diverse specialty areas may care for individuals with and carriers of dystrophinopathy. This practice resource was developed as a tool for genetic counselors and other health care professionals to support counseling regarding dystrophinopathies, including diagnosis, health risks and management, psychosocial needs, reproductive options, clinical trials, and treatment. Genetic testing efforts have enabled genotype/phenotype correlation in the dystrophinopathies, but have also revealed unexpected findings, further complicating genetic counseling for this group of conditions. Additionally, the therapeutic landscape for dystrophinopathies has dramatically changed with several FDA-approved therapeutics, an expansive research pathway, and numerous clinical trials. Genotype-phenotype correlations are especially complex and genetic counselors' unique skill sets are useful in exploring and explaining this to families. Given the recent advances in diagnostic testing and therapeutics related to dystrophinopathies, this practice resource is a timely update for genetic counselors and other healthcare professionals involved in the diagnosis and care of individuals with dystrophinopathies.

2.
Clin Lab Med ; 40(3): 357-367, 2020 09.
Article in English | MEDLINE | ID: mdl-32718505

ABSTRACT

Diagnostic genetic testing for spinal muscular atrophy is key in establishing early diagnosis for affected individuals. Prenatal carrier testing of parents with subsequent testing of the fetus for homozygous SMN1 gene deletion in those at risk of this autosomal recessive disorder as well as newborn screening can identify the vast majority of affected individuals before the onset of symptoms. Patients presenting symptomatically must be genetically confirmed as soon as possible because targeted treatments are now available that profoundly impact symptoms and improve quality of life.


Subject(s)
Genetic Testing , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Neonatal Screening , Adult , Humans , Infant , Infant, Newborn , Muscular Atrophy, Spinal/physiopathology , Prenatal Diagnosis , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...